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ABSTRACT

Resistance to cancer therapy and cancer relapse are often driven by a subpopulation of cells that are
temporarily arrested in a ’G0-arrest’ state [Wiecek et al., 2023]. By employing a weakly-supervised
learning pipeline, HistoMIL, developed by [Pan and Secrier, 2023], we benchmarked several multiple-
instance learning algorithms to build a robust classifier aiming to predict dormancy in digital pathology
slides from colorectal cancer tissue. Through an ensemble of TransMIL models evaluated through 5-
fold cross-validation, we obtained a test binary classification performance of AUROC of 0.829 and F1
score of 0.724. We further explored training models to make binary classification through multimodal
fusion of clinical features, and regressing G0-arrest scores instead of predicting discrete labels.
Throughout our work, we discussed advantages and shortcomings of different MIL algorithms and
approaches to prediction, such as trade-offs in classification performance for improved interpretability
and alignment with biological expectations. Subsequent interpretability analysis involves heatmap
visualization over test colorectal tissue, and this showed clusters of both proliferating and G0-
arrest cell populations. We hope this has the potential to assist clinical pathologists in gauging
dormancy solely from colorectal H&E stained tissue, serving as a cost-effective alternative to
sequencing technologies. The code for our experiments written in HistoMIL is found at https:
//github.com/awxlong/HistoMIL, which we contribute to the computational histopathology
research community.

1 Introduction

Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer, and the second leading cause of
cancer associated mortality worldwide [Alboaneen et al., 2023, Sallinger et al., 2023]. It predominantly affects older
individuals, with most cases occurring in people aged 50 and above. Several modifiable lifestyle factors contribute to
the development of CRC, such as a high intake of processed meats and low intake of fruits and vegetables, sedentary
lifestyle, obesity, smoking, and excessive alcohol consumption [Organization, 2023]. As per 2016− 2018 statistics,
bowel cancer is the 4th most common cancer in the UK, accounting for 11% of all new cancer cases. In females
in the UK, bowel cancer is the 3rd most common cancer (10% of all new female cancer cases). In males, it is the
third most common cancer (12% of all new male cancer cases) [UK, 2015]. One of the main drivers of poor survival
in patients is post-surgery recurrence. It has been reported that 20 − 50% of patients with CRC will relapse after
curative resection [Xiao et al., 2024], with rates varying depending on several factors such as metastatic pattern, tumor
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anatomical sublocation, and surveyed population [Qaderi et al., 2021, Safari et al., 2023]. The drivers of recurrence are
an ongoing research area.

’Dormant’ or ’persistent’ cells have been garnering the attention of the research community for their role in relapse.
When cells exit their normal replicative cycle into a state of ’G0-arrest’, although they might be metabolically active,
they cease to grow and have reduced rates of protein synthesis [Cooper, 2000]. Cells in G0-arrest are resistant to
anti-cancer compounds, such as chemotherapy, that target actively dividing cells. Furthermore, G0-arrest cells also
exhibit immune resistance or adaptation to new environmental niches during metastatic seeding. Altogether, they
facilitate minimal residual disease, becoming a major factor associated with cancer relapse. Given their relevance
for predicting relapse, [Wiecek et al., 2023] developed through a pan cancer-tissue analysis a transcriptional signature
for identifying G0-arrest cells from bulk and single-cell RNA-sequencing data. Thus, it comes with broad clinical
implications involving the monitoring of this state in a tumor through sequencing technologies to study therapeutic
resistance.

However, on one hand, bulk-RNA sequencing of cancer tissue is not spatially resolved, and thus obscures the contri-
butions of individual cell types and their interactions within the tumor-microenvironment (TME). On the other-hand,
single-cell and spatial transcriptomics techniques are expensive and are limited in cell coverage compared to whole-
slide images [Levy-Jurgenson et al., 2020]. Furthermore, sequencing technologies, especially spatially-resolved ones,
may face several hurdles when translated into routinely available, clinical-use due to their novelty, main usage in
research/experimental settings, associated costs, and the demand for relevant experienced personnel. We can thus ask
whether there exists computational alternatives that can predict both the state of G0-arrest solely from hematoxylin
and eosin (H&E) tissue and provide a spatially resolved explanation to such prediction, proving a more accessible
alternative than sequencing the tissue.

2 Literature review

Deep learning for molecular-level predictions In oncology, DL models have demonstrated exceptional capabilities
in feature extraction from complex, high-dimensional data like whole-slide images (WSIs), thereby enabling precise
and timely diagnosis, treatment planning, biomarker identification, biomarker localization, (pan-)cancer subtype
classification, and prognosis prediction [Song et al., 2023, Tran et al., 2021, Couture, 2022, Lee, 2023]. In particular
for colon cancer, convolutional neural networks (CNNs) have been trained to detect it from WSI [Alboaneen et al., 2023],
classify tumor-immune cells from colon tissue [Parreno-Centeno et al., 2022], distinguishing between microsatellite
instability (MSI) and microsatellite stable (MSS) subtypes in colorectal WSI [Hezi et al., 2024], classifying homologous
recombination deficiency (HRD) and MSI spots directly from CRC WSI [Schirris et al., 2022], detect multiple genetic
mutations [Konishi et al., 2023], among others. [El Nahhas et al., 2024] propose a model which predicts biomarker
scores rather than categorical labels of cells in H&E images. They argue that biomarkers of key cancer processes are
continuous measurements, and binarizing them result in information loss that may hamper a classifier’s performance.
Through their experiments for predicting HRD labels and scores, they found that using regression significantly enhanced
the accuracy of spatially resolved, HRD prediction, and offered a higher prognostic value than classification-based
labels. Because both HRD and G0-arrest stage are biomarkers that can be continuous scores, we explore predicting
G0-arrest scores in addition to classification. With regards to proliferation biomarkers, [Martino et al., 2024] proposed
using conditional adversarial network to identify Ki-67, a protein associated with the G1, S, G2, and M phases of
the cell cycle, from H&E images of oral squamous cell carcinoma. A large scale, systematic pan-cancer study by
[Arslan et al., 2024] benchmarked 13443 DL models to predict 4481 multiomic biomarkers across 32 cancer types, and
they reported high predictive capability of cell proliferation biomarkers, particularly for breast, stomach, colon, and
lung cancers, with areas under the receiving operating characteristics (AUROC) reaching up to 0.854. However, to the
best of our knowledge, we have yet to find prior work attempting to predict cell dormancy from colorectal WSI, a gap
which we aim to fill.

Weakly supervised learning. The gigapixel resolution and thus complexity of WSIs present unique computational
challenges for the design of a DL pipeline to analyze them. The typical paradigm of pre-processing WSIs consists of
tissue segmentation, followed a patch-wise cropping step which divides the gigapixel tissue into thousands of square
patches with smaller dimensions, e.g., 224× 224 pixels, a process known as ’tessellation’. This is because gigapixel
WSIs cannot be processed as a whole using modern deep CNNs, let alone transformer-based neural networks, mainly
due to limited GPU memory [Gadermayr and Tschuchnig, 2024]. These image patches can either be passed directly to
a model for making a prediction, or fed into a feature encoder to obtain a feature representation W ∈ RN×D of the
WSI, where N is the number of patches and D is the dimension of the vector output by the feature encoder. Patch-wise
embeddings are aggregated through pooling methods to obtain a global prediction [Tan et al., 2023].

2



A PREPRINT - SEPTEMBER 9, 2024

Only slide-level labels are available due to the intense annotation burden associated with WSIs [Tan et al., 2023,
Gadermayr and Tschuchnig, 2024], as well as the expensive costs of using spatial-transcriptomics platforms. This
leads to non-spatially resolved bulk-RNA or scRNA-seq data to be more readily available. A slide-level label only
makes a broad statement about the WSI, i.e., if only in certain regions of the tissue G0-arrest cells are identified, then
the entire WSI receives a positive label. The common practice to train a DL model in such a setting is to resort to a
weakly-supervised learning framework, in particular multiple-instance learning. In the literature, a slide is referred to
as a ’bag’, and a patch is referred to as an ’instance’. The goal of training a model under the MIL framework is to learn
to classify slides, as well as the key patches that ’trigger’ the slide’s label. Interestingly, learning such key patches,
p(label|patches), enables the DL model to highlight regions of interest (ROIs) in the slide as part of interpretability
analysis [Ilse et al., 2018].

Mathematically, a bag Bn is a collection of instances {xn
1 , x

n
2 , ..., x

n
d}, where each Bn is given single label yn as

follows:

yn =

{
s if ∃j such that xn

j = 1

0 if ∀j, xn
j = 0

(1)

, where s ∈ {0, 1} in a binary classification task, e.g., predicting the presence/absence of G0-arrest cells, or s ∈ R if we
are predicting a score for the state of G0-arrest.

We train a classifier f that can predict the label of a new bag, which involves optimizing the negative log likelihood of
the parameters θ:

−LL(D|θ) =
N∑
i=1

ℓ(yi, ŷi) (2)

, where ŷi = maxj f(x
n
j ) can be the max pooling over the N instance embeddings in a bag to determine the bag’s

label, ŷi =
∑N

j=1 f(xij) a sum pooling of all embeddings within the bag, or ŷi = 1
N

∑N
j=1 f(xj) can be mean pooling

which computes the average of all instance embeddings in the bag (implicitly treating all of them equally), which is not
necessarily the case for WSIs where tumour tissue is more relevant for the task. For each pooling method, the instance
embeddings can have attention scores, α, which act as weights representing their relative contribution to the final
prediction, e.g., ŷi = 1

N

∑N
j=1 αjf(xj). These attention scores are inherently interpretable as they can be traced back

to the original WSI input space, highlighting regions of interest. ℓ is a loss function depending on the output and label
modality, which could be the mean squared error in the continuous case, or binary-cross entropy in the discrete case.
The choice of architectural backend of f , and the modality of the output (multimodal vs. regression vs. classification)
are highly customizable depending on the task specifications and available computational resources.

Foundational models for histopathology. There is an increased interest in the training of foundational models thanks
to the massive size and diversity of the training data that is available for representation learning. They are often trained
on > 100000 WSIs spanning patient cohorts, cancer tissue types, and across diagnostic tasks. Thanks to such diversity,
features output by foundational models are context-dependent, and semantically rich. These can help alleviate the
demand for high volumes of data for representation learning, as well as have high prospects of generalization given their
pretrained regime across tissue types [Chen et al., 2024]. [Chen et al., 2024] propose UNI, a foundational model based
on the Vision Transformer (ViT) pretrained through self-supervised learning using more than 100 million images from
over 100000 diagnostic H&E -stained WSIs across 20 major tissue types, including colorectal cancer. [Xu et al., 2024]
propose Prov-GigaPath, which employs a scalable variant of the ViT (called LongNet) and is pretrained on 1.3 billion
256× 256 pathology image patches in 171189 WSIs spanning 31 major tissue types. Both UNI and Prov-GigaPath are
open source, facilitating the integration into our pipeline. Finetuning foundational models is prohibitively expensive,
and as such we restrict ourselves in using them as frozen feature extractors in our work.

Multimodal fusion. Consider the following clinical dilemma of a pathologist: after identifying a few morphological
abnormalities in a patient’s colorectal WSI, they conclude the patient does not need to undergo aggressive chemotherapy.
However, would their decision change if they knew the patient was old (> 65) and displayed a high carcinoembryonic
antigen (CEA) level? In other words, would their decision change if they based it solely on morphological features
versus conditioned jointly on morphological and clinical features? Multimodal fusion is defined as computing a
prediction conditioned on a combination of features extracted from different input modalities, such as histological
images, genomic data, electronic health records, and a patient’s clinical features. The rationale behind is to train a model
able to capture cross-modality interactions with the hope of improving the model’s predictive expressivity and accuracy
[Feng et al., 2024]. There exist many fusion methods in supervised learning, ranging from a simple concatenation of
different input modalities (early fusion), intermediate fusion, or fusion of the embeddings of the different input modalities
before making a decision (late fusion) (for a review of methods please see [Stahlschmidt et al., 2022]). In computational
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histopathology, [Chen et al., 2022] propose a pan-cancer model integrating WSI with genomic data through late fusion
to estimate patient survival, elucidating advantages such as mostly outperforming unimodal approaches and improved
model explainability thanks to the joint analysis of image and genomic features. [Volinsky-Fremond et al., 2024] also
combines through late fusion the tumor stage with endometrial H&E WSI for predicting recurrence risk. However, we
note that multimodal fusion should be carried out carefully to avoid problems such as the incorporation of noisy data
that may hamper model performance. Furthermore, in our problem setting, because our G0-arrest labels are computed
from RNA-sequencing data, it would be inappropriate to fuse RNA-sequencing data data with colorectal WSI in our
multimodal model to avoid it learning to ignore the morphological features, and instead predict G0-arrest from the
RNA-seq features alone, a phenomenon known as ’spurious shortcut’ [Lipkova et al., 2022].

HistoMIL. The implementation of a MIL-based pipeline can be cumbersome especially given the unique challenges
with handling WSIs and the plethora of MIL algorithms proposed over the years. To facilitate the process of training and
evaluating different MIL algorithms tailored to processing cancer WSIs, [Pan and Secrier, 2023] proposed HistoMIL,
a Python package which encompasses the preprocessing, training, and inference stages of MIL-based pipeline. It
leverages the PyTorch Lightning framework to enable efficient and scalable training of MIL models, which consists of
techniques like mixed precision training (reducing 32 bits to 16 bits precision), gradient accumulation over batches
to reduce the frequency of backpropagation and be able to simulate the processing of larger batches in limited GPU
memory, model weight check-pointing which helps resuming failed experiments avoiding re-initializing one from
scratch, and logging evaluation metrics to Weights and Biases. HistoMIL is also highly customizable with regards
to adoption of MIL algorithms. As of writing, the package by default implements ABMIL, DSMIL, and TransMIL
algorithms, and assumes the implemented MIL model solves a binary/multiclass classification task. We adapt 8 new MIL
algorithms for our benchmark, and implement functions encompassing cross-validation, multimodal fusion, regression,
and interpretability analysis.

3 Methodology

Our pipeline is described in Figure 1, which can be broadly split into 3 steps: 1) feature extraction, 2) benchmarking
models under 5-fold cross-validation, including ablations and ensembling, to evaluate over the test set, and 3) performing
interpretability analysis.

3.1 Feature extraction per WSI and patient

We obtain 578 colorectal adenocarcinoma, H&E stained WSIs from the TCGA, each matched with bulk-RNA sequencing
data. By employing the genomic signature of [Wiecek et al., 2023], each colon WSI is given a label s (see Equation
1). If it’s continuous, s is a score indicating level of quiescence. This score is binarized based on a clinical threshold,
whereby if it’s negative (≤ 0), s = 1 indicating the presence of cells in G0-arrest in the WSI, and if positive (> 0), it
represents absence of such.

HistoMIL preprocesses one WSI following the segmentation and patching protocol at [Lu et al., 2021], where we
choose a patch size of (224 × 224) with no overlap. We proceed to store a matrix representation W ∈ RN×D by
stacking D−dimensional feature vectors computed per each of the N patches of a WSI for each of the following feature
encoders: ResNet50 (D = 2048), UNI (D = 1024) and Prov-Gigapath (D = 1536). We do this for each of our WSI,
where we note that 1) N is different per slide due to morphologically different tissue per person or anatomical site, and
2) it can range between [10000, 90000]. In the interest of training some MIL algorithms with topological constraints, a
tessellated WSI is represented with an undirected graph G = (V,E) where vertices V correspond to image patches,
and (vi, vj) ∈ E are pairwise edges of patches that are adjacent to one another, where in WSIs each patch has at most
8 neighboring patches. G is represented via a weighted adjacency matrix A ∈ RN×N per WSI, where Aij = aij
according to the following equation 3:

aij =

{
exp

(
−(hi − hj)

2
)

iff (vi, vj) ∈ E, (hi,hj) ∈ W
0, otherwise

(3)

, where a distance similarity score is computed only if two patches are adjacent to one another, and 0 otherwise. This
similarity score is the exponentiated, normalized, Euclidean distance between the feature representations of 2 patches,
which injects a bio-topological prior constraint that drives MIL models to attend to patches close and similar to each
other [Fourkioti et al., 2024].

Our WSIs belong to 570 unique patients, as for some of them, tissue from multiple anatomical locations was collected.
Since we explore multimodal fusion later in our work, we collect the following clinical features f ∈ R27 per patient:
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Figure 1: Depiction of our pipeline. First, 1.a) each colorectal WSI 1.b) undergoes tissue segmentation and 1.c)
tessellation. At 1.d), we compute an adjacency matrix A via Equation 3. For each WSI, 1.e) we compute W ∈ RN×D

using 3 feature encoders: ResNet50, UNI, and Prov-Gigapath. For each patient, 1.f) we extract f ∈ R27 clinical features
described in Section 3.1. After feature extraction, a classifier f is assembled at 2.a) by implementing each of the MIL
algorithms described at Section 3.2 coupled with each of the feature encoders. At 2.b) we depict train-test splitting,
along with a 5-fold cross validation framework, which is explained in more detail in Figure 2. 2.c) shows 2 evaluation
methods: on one hand we obtain predictions with each fold’s optimal model, and on the other hand with an ensemble of
the optimal models. Lastly, at 3.a) we report results of our cross-validation and test set. We perform interpretability
analysis based on 3.b) heatmap generation, and at 3.c) based on the integrated gradients method for the multimodal
model.
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• patient’s age at the time of pathological diagnosis, which we treat as a normalized continuous variable.

• count of lymph nodes observable in the patient’s tissue, which we treat as a normalized continuous variable.

• preoperative CEA level, which is treated as a normalized continuous variable. It refers to CEA in the blood
before surgical intervention in CRC patients and serves as a tumor progression marker to guide therapy.

• gender, a binary variable with values ’male’ and ’female’.

• race, a binary variable with values ’white’ and ’non-white’

• other diagnoses, a binary variable indicating whether the patient has comorbidities

• pathological stage, a categorical variable with values stages II, IIA, IIB, III, IIIB, IIIC, IV, IVA. Stages II, IIA
and IIB are also known as early stage cancer, while the remaining ones can be clustered under late stage cancer.
Metastasis is one of the main markers differentiating these cancer stages.

• histological site, which is a categorical variable indicating tumor anatomical site following the Third Edition
of the International Classification of Diseases for Oncology (ICD-O-3). Values include the ’cecum’, ’colon,
not otherwise specified (NOS)’, ’rectosigmoid junction’, ’rectum, NOS’, ’sigmoid colon’ and ’other’.

• patient’s neoplasm cancer status, which is a binary variable indicating whether there’s an observable tumor or
not in the tissue.

• venous invasion, which is a binary variable referring to the presence of tumor cells within blood vessels outside
the colorectal wall.

• lymphatic invasion, which is a binary variable referring to the presence of tumor cells within lymphatic vessel.
Both venous and lympathic invasion are markers of metastasis and recurrence [Messenger et al., 2012].

• history of colon polyps, which is a binary variable indicating whether patient has developed polyps or not.
Morphological details about the polyps are not provided.

• residual tumor, which is a binary variable indicating the presence of cancerous tissue after treatment, such as
post-surgical resection.

• loss of expression of mismatch repair (MMR) proteins as detected by immunohistochemistry (IHC), which
is a binary variable referring to whether there’s a complete absence of nuclear staining for MMR proteins
indicating inability to correct DNA replication errors. It serves as an biomarker for increased potential for
tumorigenesis [Nadorvari et al., 2024].

We discuss in detail the selection and preprocessing of the above features at the Appendix C, which involve technicalities
such as normalization and mode imputation whilst avoiding train-test leakage, grouping of variables to address class
imbalance, one-hot encoding, shadow-based feature selection, among others.

3.2 Benchmarking models under 5-fold CV

We are faced with the classical challenge of data shortage in histopathology, where we only have 578 slides. To ensure
our benchmarked models learn the necessary morphological features displayed over the WSI to discriminate G0-arrest
cells, we perform a 90%− 10% train-test split, yielding 58 images for test-evaluation. To guarantee model robustness,
we accompany this with 5-fold cross validation (CV) in the training set, which consists of splitting the training set into
5 non-overlapping folds, where 4 are used for training and 1 for validation a model. This is repeated 5 times, each time
the model is validated on 1 different validation fold, and trained on the remaining 4 folds (see Figure 2).

In contrast to prior work, we employ CV not for hyperparameter tuning nor neural architectural search since that would
be prohibitively expensive and cumbersome given our limited GPU cluster resources. Rather, CV is 1) used to get
uncertainty estimates of a model’s generalization performance, and 2) obtaining independent fold models to build an
ensemble for predicting over the test set, which we discuss below.

At each fold, we benchmark the following MIL algorithms, for each feature encoder. They are chosen based on
their novelty, reported efficiency and ease of adoption into the current pipeline in HistoMIL. By ease of adoption, we
avoid algorithms such as Distillation Across Scales-MIL (DAS-MIL) [Bontempo et al., 2023] as they require different
features matrices per WSI corresponding to different magnifications of the slide, while all algorithms we benchmark
only require W at the slide’s original resolution. The MIL algorithms, along with a brief justification, are:

• Attention deep MIL (AttentionMIL): Proposed by [Ilse et al., 2018], it’s a general purpose MIL algorithm
that has been used as a baseline in many settings not just restricted to histopathology. It employs the attention
mechanism, and assumes permutation invariance of the patches of the slides.
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• Transformer: transformers have the impressive capabilities of learning through self-attention long-range
dependencies and contextualizing concepts in long sequences. In MIL this entails modeling of relation-
ships among instances within a bag, effectively capturing both morphological and spatial information.
[Wagner et al., 2023] experimentally show that a fully-transformer based approach results in higher AUROC
and generalization performance than pure-CNN or hybrid CNN-Transformer methods to predict biomarkers
(MSI, and mutations BRAF, and KRAS) on biopsies of colorectal cancer.

• Transformer-based MIL (TransMIL): Proposed by [Shao et al., 2021], TransMIL alleviates the permutation
invariance assumption of the patches in the slide by modelling the correlation amongst instances through
a multi-headed attention. The main contrast with the above method is that it replaces the self-attention
mechanism with the Nyström attention to reduce the quadratic complexity O(N2) of the former with a linear
complexity of the latter O(N), which is important in our case to deal with slides with up to 90000 patches.

– With TransMIL, we also explore multimodal fusion (TransMILMultimodal) of the clinical features
above through late fusion. This consists of passing the embedding of W and the embedding of the clinical
features through an gating-based attention for automatic regularization, followed by the Kronecker
product to model for the pairwise feature interactions of the image with clinical modalities before making
a final decision [Chen et al., 2020, Volinsky-Fremond et al., 2024].

– We also explore regression (TransMILRegression), which consists of changing the output of the original
TransMIL from a class probability with a range of [0, 1] to a logit with a theoretical range of [−∞,+∞].
This is accompanied by changing a classification loss function with a regression-based alternative, along
with providing G0-arrest ground truth scores instead of binarized labels (see Equation 1)1.

• Double-Tier Feature Distillation Multiple Instance Learning (DTFD-MIL): Because of our small sample
size (< 600), we adopt algorithms designed to address data scarcity. DTFD-MIL [Zhang et al., 2022] address
this by partitioning a slide into "pseudo-bags" of patches to virtually increase the number of training bags, and
making a slide-level classification decision by aggregating the predictions of the "pseudo-bags", in a process
denoted a "double-tier MIL framework".

• Clustering-constrained Attention Multiple Instance Learning (CLAM): Proposed by [Lu et al., 2021],
CLAM is also designed to address low-data settings. Through an attention-based mechanism, it learns to focus
on the most relevant patch features within a slide by learning to cluster positively from negatively labeled
patch features.

• Context-Aware MIL (CAMIL): Proposed by [Fourkioti et al., 2024], CAMIL represents a WSI as a graph
and performs "neighbor-constrained attention" to make a classification decision. It consists of injecting the
bio-topological constraint stated in Equation 3 to consider the pairwise attention score of patches only if they
are adjacent to one another.

• Graph Transformer: Proposed by [Zheng et al., 2022], it’s a hybrid architecture which also makes use of the
graph representation of WSI as CAMIL, whereby the input patches’ features go through a vision transformer
to make a classification decision.

All the above models, except in TransMILRegression which uses the MSE loss function, are trained by minimizing the
binary cross-entropy loss with logits (BCEWithLogits). For all algorithms we train with mixed-precision, a batch size
of 12, and gradient accumulation over 4 batches to simulate a batch-size of 4, giving us the smoothness and convergence
speed of mini-batch optimization. Furthermore, all models, except the Transformer, can complete their 5-fold CV in
≤ 16 GB of GPU memory in less than 3 days. The Transformer is the only MIL algorithm which requires an A40,
corresponding to 48 GB of GPU memory, and can complete the 5-fold CV regime in less than 6 hours. We also don’t
perform hyperparameter tuning due to constrained computational resources, and instead reuse the hyperparameters
mentioned in their respective papers. For specific details, please see Appendix D.

AUROC is the de-facto metric for assessing deep learning model classification performance in computational histopathol-
ogy, as well as it’s appropriate for making cross-modal comparisons because it’s agnostic to decision thresholds. We
accompany it by the F1-score [Schirris et al., 2022] by binarizing class probabilities at a sound threshold of 0.5 given
our balanced distribution of G0-arrest binary labels. Furthermore, F1 is arguably a more valuable metric for our
purposes as it penalizes a model’s FP and FN predictions, which is important if the predictions have implications
on elucidating how a tumor spreads. In particular for TransMILRegression, where outputs stop being probabilities,
we compute instead the Pearson’s correlation coefficient (PCC) between them and the ground-truth G0-arrest scores

1We only pick TransMIL with the UNI feature encoder to explore multimodal fusion and regression for 2 reasons: it achieves the
second highest mean CV F1-score, preceded by the Transformer, and it’s affordable to train within 16 GB of GPU memory, unlike
the Transformer which requires at least 48 GB.

2This is because we can’t stack W as N is different per slide
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Figure 2: Illustration of our training, CV and evaluation framework with ensembles. a) illustrates train-test splitting,
followed by 5-fold CV where our training set is split into 5 equally-sized folds, where 4 are used for training and 1 for
validation. Per fold, HistoMIL checkpoints the optimal model by monitoring when it achieves the highest AUROC,
where for TransMILRegression it monitors the F1-score. b) Each independent optimal model per fold is evaluated on
the test set, such that we are able to obtain uncertainty estimates of the model’s generalization capability. c) Afterwards,
an ensemble is constructed by averaging the predictions of the 5 optimal models and evaluated on the test set to
observe any possible improvement. This pipeline is applied for each MIL algorithm, for each feature encoder, except
TransMILMultimodal and TransMILRegression where only UNI is used to avoid an exponential amount of experiments
to be run.

[El Nahhas et al., 2024]. Because we can still binarize them at a clinical threshold of 0, we can compare F1 across all
models benchmarked. Additionally, we also measure performance metrics like validation/test loss, accuracy, precision,
specificity, and recall. We also monitor training accuracy and loss to check for training stability and convergence.

3.3 Inference and interpretability analysis

For each classifier, we report the average validation AUROC and F1 across folds per epoch. To prune the exponential
increasing space of experiments for us to run, we only choose the best performing algorithm based on the average cross-
validation performance, along with its highest performing feature encoder to explore ablation studies: multimodal fusion
and regression. This explains why only TransMILMultimodal and TransMILRegression are amongst the benchmarked
models above (Figure 2a).

For each classifier, our HistoMIL framework allows us to store the checkpoints at which it achieves the highest validation
performance per fold. We evaluate this highest performing model per fold on the test set, and obtain 5 test scores per
MIL model for each feature encoder (Figure 2b). Because each highest performing model per fold is an independent
model, we further explore whether ensembling them [Khened et al., 2021] by averaging their predictions help improve
their generalizability by evaluating them on the test set (Figure 2c).

Interpretability analysis is done in 2 ways. For all MIL algorithms models except TransMILMultimodal which consists
of clinical features, we trace the attention scores back to the original patches they correspond to explain the model
output, adopting the method by [Lu et al., 2021]3. Because in all MIL algorithms, the attention score per patch is pooled
to make a prediction (see explanation of Equation 2), visualizing their values over the original patches of the input
space helps explain a model’s final classification decision or regression score. Since the cell populations in the tissue
slide are either in a state of proliferation, or in G0-arrest (i.e. these 2 states are mutually exclusive), patches with high
attention scores are regions which drive the model to predict a high likelihood of G0-arrest cells on those patches, while
low attention scores correspond to regions unlikely to contain them, i.e., instead there are normal-cycling cells.

3While there exists other methods such as GradCAM, we note that they don’t fit under a histopathology pipeline since they map
outputs back to the original input space. By contrast, in our setting, we don’t work with the original WSI due to its gigapixel size, but
rather with a feature representation W of it
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For TransMILMultimodal, the model also incorporates clinical features which can not be spatially resolved back to
the image input space, and as such the patch-dependent attention scores don’t encompass the influence these have
over the output. Thus, we further resort to the integrated gradients (IG) method [Sundararajan et al., 2017] to explain
which clinical features contribute to the final prediction as done by [Volinsky-Fremond et al., 2024]. IG consists of
obtaining the contribution of each input clinical feature to the final prediction by integrating the gradients of the model’s
output with respect to the input features along a path from a baseline input to the actual input. Such baseline input is a
27th-dimensional zero vector which represents a non-informative state. As a result, IG provides a measure of how much
each clinical feature contributes to the prediction compared to a state of null information. A higher, absolute IG value
indicates a greater influence of that feature on the final prediction.

All relevant code is found at https://github.com/awxlong/HistoMIL, and scripts for running experiments are at
https://github.com/awxlong/scripts_g0_arrest

4 Results and Discussion

4.1 HistoMIL streamline MIL models to assist pathologists in gauging the G0-arrest population in colon tissue

We benchmark the MIL models and evaluate them on their predictive accuracy on G0-arrest. Our cross-validation
results are at Appendix A. Our evaluation over the test set in terms of AUROC (Figure 3) and F1 (Figure 11) suggests
that MIL algorithms trained with foundational feature encoders may lead to better generalization performance. We also
compute the test F1 over ablations of TransMIL using the UNI feature encoder and report results in Figure 12, where
we note that TransMILRegression improves the F1 over the standard TransMIL, while TransMILMultimodal has some
performance sacrifice, albeit the latter is compensated with the extensive analysis of its clinical features in Section 4.3.
TransMILMultimodal also yields more stable performance across folds, as shown by the tighter uncertainty regions.

We have no prior SoTA results on G0-arrest prediction from histopathological images to compare our current metrics.
However, our most performant models can consistently achieve an AUROC greater than 0.75 and F1 greater than 0.65,
which underscores the capability of our deep learning models to capture relevant morphological features in the colon
tissue to make a binary decision on the presence of G0-arrest cells. This is further explored by the visualization of
heatmaps over the tissue by applying our interpretability methods observed in Figure 4. We leave as future work the
validation of such heatmaps through ST, and restrict ourselves in highlighting differences of the heatmaps generated
across algorithms such as in Figure 7.

Figure 3: Average test AUROC obtained from the 5 independent optimal models per fold, per feature encoder. We
notice that for all algorithms, except CAMIL, at least one of both feature encoders surpasses the performance of the
ResNet50 encoder, albeit with overlapping std. errors (i.e. in the figure the purple and teal bars are often higher than
their lightcoral counterpart). This suggests that the choice of foundational feature encoders helps with generalization.
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Figure 4: Side-by-side comparison of heatmaps generated by benchmarked algorithms using the UNI feature encoder.
Each heatmap is obtained by mapping the average attention scores from an ensemble of the best models per CV fold.
All heatmaps explain a TP prediction except for AttentionMIL and GraphTransformer which erroneously make a
slide-level prediction of 0. High attention scores correspond regions with high likelihood of cells in G0-arrest, while
blue regions has low likelihood of G0-arrest, i.e., cells proliferating by the assumption of mutual exclusivity of classes.
Gaussian blur has been applied to avoid a strict demarcation of the patches.

4.2 Ensemble modelling improves prediction accuracy

For each MIL algorithm, and for each feature encoder, we construct an ensemble consisting of the 5 optimal models
from the CV framework and evaluate on the test set, with results reported at Table 1. We also report an ensemble for
each of TransMIL’s ablations at Table 2. We generally observe higher scores than in Figures 3, 11, 12, indicating that
ensembling helps with generalization performance. Additionally, both UNI and Prov-Gigapath feature encoders’ scores
are higher than ResNet50, which reinforces the idea that they help with improved model generalizability even when
ensembling.

The performance gain from ensembles prompts us to explore how heatmaps generated by an ensemble contrast with
those from the single optimal model in cross-validation. Heatmaps from ensembled algorithms consist of averaging
the attention scores of each model and plotting them over the WSI. As an example, for TransMIL, we observe how
ensembling helps correct a previously wrong prediction made by a single best TransMIL (Figure 5). For a slide labeled
1, the ensemble’s heatmap shows more regions of cells in G0-arrest identified, while also attenuating previously very
confident regions of cell proliferation. A disadvantage with our ensembles is that none of them provide confidence
intervals into their predictions.

For interested pathologists, we share a more comprehensive view of heatmaps generated by our Ensemble TransMIL in
the Appendix Figure 13, spanning those generated in correct and wrong predictions, along with samples of patches
where the ensemble bases its predictions on.

4.3 Multimodal fusion improves interpretability with some performance sacrifice

We build an Ensemble TransMILMultimodal and analyze the IG values computed over the test set. We observe that a lot
of features, particularly categorical ones like ICD-O-3 site and Pathological stages mostly lose their relevance (i.e. aver-
age IG value close to 0) for predicting G0-arrest. There is perhaps much heterogeneity regarding these clinical features
with respect to predicting the G0-arrest population, which drives the model to base a prediction with morphological
features and other clinical features instead. Regardless, we observe that particularly for Pathological Stage IIA (classified
under Early Stage), negatively influence a G0-arrest prediction, which could be understood as TransMILMultimodal
learning that this stage is associated to the tissue more likely to have populations of proliferating cells. This is consistent
with current views of pre-metastasis cancer cell behavior discussing that tumor cell dissemination can occur in the very
early stages of disease, long before a tumor is even palpable [Attaran and Bissell, 2021, Lawrence et al., 2023]. On the
other hand, TransMILMultimodal identifies Pathological Stage IIIC (Late Stage cancer) as having an average IG value
greater than 0, driving the model to predict a high likelihood of G0-arrest populations in the CRC tissue. However,
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Figure 5: Depiction of how an ensemble improves predictions, and this is reflected in the heatmaps generated. At a)
we show a single TransMIL trained with the UNI feature encoder making a false negative prediction on a testpoint.
At b), this is corrected into a true positive prediction by an ensemble of the 5 optimal TransMIL according to each of
their best validation AUROC achieved per fold. The ensemble is able to identify more regions with high likelihood
of G0-arrest cells, while decreasing its belief of the presence of normal-cycling cells in the same regions the single
TransMIL believed otherwise. The sampled patches in a) correspond to those with low attention scores, and those in b)
are those with high attention scores due to the mutual exclusivity assumption.

ResNet50 UNI Prov-Gigapath
AUROC F1 AUROC F1 AUROC F1

Transformer 0.759 0.710 0.859 0.780 0.841 0.737
TransMIL 0.751 0.737 0.829 0.724 0.812 0.750

DTFD-MIL 0.754 0.689 0.831 0.720 0.828 0.741
CAMIL 0.772 0.719 0.779 0.667 0.816 0.746
CLAM 0.794 0.759 0.776 0.679 0.844 0.750

AttentionMIL 0.751 0.600 0.779 0.600 0.812 0.654
GraphTransformer 0.325 0.507 0.702 0.667 0.602 0.714

Table 1: Scores obtained from ensemble predictions on the test set. Ensemble consists of the best models per each CV
fold which maximized AUROC. In bold we highlight the highest metric across algorithms (column-wise), and in italics
we highlight the highest metric across feature encoders (row-wise). This is, the Transformer architecture with the UNI
feature encoder achieves the highest test performance.

the clinical literature mainly characterizes late stage cancers as consisting of aggressive growth, higher metastatic
potential and thus lower survival prospects [Lawrence et al., 2023]; as such they are associated with proliferating cells.
Nonetheless, disseminated tumor cells can become dormant in all stages of cancer, and be reactivated due to changes in
the tumor microenvironment or therapeutic stress [Truskowski et al., 2023].

By looking at non-zero IG values of relevant clinical features, the Ensemble TransMILMultimodal, identifies patient’s
age, gender and preoperative CEA level as important features that help understand recurrence through cells in G0-
arrest. It’s reasonable for both models to focus on preoperative CEA level given its well-established reputation as
a prognostic biomarker of CRC, with high CEA levels (> 10 ng/mL) associated with a higher risk of recurrence
and metastasis [Lai et al., 2023]. Additionally, age has prompted much research regarding CRC progression and
treatment outcomes [Cho et al., 2021]; for instance, age-related biological changes in immune response (’immunose-
nescence’) [Thoma et al., 2021] leads to older patients being associated with higher prevalence of senescent T cells,
which are less effective at responding to tumors. Furthermore, research has corroborated the existence of sexual dimor-
phisms with regards to CRC response to treatment efficacy or toxicity [Baraibar et al., 2023], or survival advantages
[Geddes et al., 2022], which could be partly explained by an interplay of senescent and proliferating cells.

On the other hand, negative IG values correspond to features contributing to a prediction of proliferating cells related to
recurrence. Research has identified racial disparities regarding recurrence incidence, with [Snyder et al., 2020] finding
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AUROC F1 PCC
TransMIL 0.829 0.724 N/A

+ Multimodal 0.805 0.679 N/A
+ Regression N/A 0.786 0.312

Table 2: Scores obtained from ensemble predictions on the test set. Ensemble consists of the best models per each CV
fold which maximized AUROC. For multimodal and regression, we only perform experiments on TransMIL using the
UNI feature encoder. For regression, we note that only PCC is available to measure the correlation of the continuous
predictions with the G0-arrest scores. F1 is measured via binarizing the regression scores with a clinical threshold of 0
and comparing with the binary ground truth labels. The first row is the same as in Table 1. We obtain the highest F1
through binarizing regression scores.

that amongst US patients with locoregional CRC, black patients experience a higher risk of recurrence and mortality
compared to white patients. In addition, features like lymphatic invasion indicates tumor proliferation to regional lymph
nodes and distant sites. Lymphatic invasion, nonetheless, has also been associated with cancer recurrence through tumor
dormancy. This is because cancer cells which enter lymphatic vessels and colonize lymph nodes can remain dormant
there for extended periods, leading to relapse [Giancotti, 2013]. We note that a limitation with both interpretability
methods (feature importance and IG) is that neither shows for which particular values or range of values of each feature
contribute to the final G0-arrest classification decision, nor in which direction do they push/pull the decision boundary.
As such, we can at most state that these features are relevant, but can’t stratify G0-arrest based on the values of these
features.

The literature on the understanding of CRC recurrence is nuanced and multi-faceted, and generally it’s inconclusive
whether it’s driven mainly through tumor proliferation or reactivation of dormant tumor cells. Our heatmaps and
multimodal analysis can aid clinical pathologists in navigating through this complicated tumor landscape.

Figure 6: Descendently ranked IG values per clinical feature obtained by averaging the IG values obtained with an
ensemble TransMILMultimodal predicting over the test set. We use the same color code as before, except that with IG
values, the theoretical range extends to [−∞,+∞], where positive IG values refer to features contributing to a positive
prediction, while negative ones to a negative prediction. IG values of 0 indicate the corresponding features provide no
significant information to make a prediction compared to a null baseline of 0.

4.4 Inductive biases yield more biologically meaningful predictions

Spatial context-awareness From the heatmaps shown in Figure 4, we observe that the spatial constraints of CAMIL
and GraphTransformer enable visualizing more pronounced clusters of cell populations, while for alternatives the
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cell populations are more scattered. Despite this comes at some performance sacrifice, where CAMIL is our fourth
performant model and the GraphTransformer is amongst the worst, the heatmaps indicate their local predictions align
closer to biological expectations regarding both the proliferating and quiescent cells to cluster with each other (see a
closer look at Figure 7). The drop in performance could be explained as follows: if individual patches were misidentified
to contain G0-arrest cells, then subsequent patches would also be considered to erroneously contain G0-arrest cells due
to the adjacency constraints that make neighboring patches influence each other.

Biological continuum awareness Additionally, predicting G0-arrest scores instead of dichotomized labels is more
biologically plausible. Even though there is a clear demarcation regarding cell states between G0-arrest, and pro-
liferating cells, the cell cycle itself is a spectrum, and cells could be in a state transitioning to G0-arrest or exiting.
As such, binarizing G0-arrest scores could lead to information loss [El Nahhas et al., 2024] regarding this biological
spectrum. While our Ensemble TransMILRegression results show poor PCC with regards to ground truth scores (Table
2), interestingly, if we train the model through regression and binarize the output scores, Ensemble TransMILRe-
gression achieves the highest test F1 (0.786) amongst all the models benchmarked. This underlies the advantages of
learning to predict regression scores helping the model become more expressive and improve accuracy of prediction.
[El Nahhas et al., 2024] also argue that regression-based models yield heatmaps highlighting more clinically relevant
regions. Whilst we compare heatmaps amongst TransMIL ablations in Figure 14, we note that due to our lack of ground
truth annotations at a patch-level regarding the populations of cells in G0-arrest, we are unable to comment on the
biological fidelity of regression-based heatmaps. We thus leave this as future work.

Figure 7: Adjacency constraints introduced via the graph representation of a WSI helps the model visualize more
pronounced clusters of cell populations. While this comes at the expense of some performance loss, the spatially-
constrained heatmaps produced by a) CAMIL and GraphTransformer align more with biological expectations regarding
both the proliferating and quiescent cells to cluster with each other. This is in contrast to b) TransMIL and other
algorithms which tend to produce heatmaps with more scattered cell populations. At the bottom of each heatmap we
show a sample of 6 patches with the highest attention scores contributing to the TP prediction.

4.5 Limitations and future work

G0-arrest and tumor heterogeneity. Our main interest revolves around guiding therapy to be effective against CRC
tissue with populations of G0-arrest tumor cells. However, we note that our slide-level labels y are computed from
bulk-RNA sequencing data, thus there is a mix of genomic signals derived from the TME which is not unique to tumor
cells, but also from a mixture of fibroblasts, immune and endothelial cells. Future work can exploit ST at a single-cell
resolution to demarcate tumor and somatic cells in G0-arrest, however, they could prove relatively inaccessible due to
their expensive costs.
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Out-of-distribution evaluation. One of the main nuances of our work revolves around evaluation. An interplay
of small dataset, gigapixel sized WSI, challenging task of molecular-level prediction and constrained computational
resources drive us to decisions with a few trade-offs. A small dataset results in a small test set (58 images) to guarantee
model capturing important morphological features during training. Despite doing 5-fold cross-validation for each
algorithm for a thorough evaluation of their generalization performance, there are more rigorous ways to evaluate
each of our benchmarked models. Some research teams measure model generalization capability by making test-splits
consist from a patient cohort such as TCGA stratified by different clinical sites [El Nahhas et al., 2024] or datasets
belonging to different patient cohorts [Wagner et al., 2023], e.g. they train their transformer model to predict MSI on
colorectal WSI on cohorts such as TCGA, CPTAC, among others, except YCR-BCIP and test their model on biopsies
from YCR-BCIP. Both methods correspond to out-of-distribution evaluation, which we aim in future work. Furthermore,
regarding interpretability analysis, we aim to employ CRC tissue which has undergone ST analysis in order for us
to evaluate the accuracy of the heatmaps produced by our models per feature encoder. Such evaluation would help
us answer questions such as whether the use of foundational feature encoders (and with which algorithms) highlight
more biologically-relevant important regions in the colon WSI, in addition to their slide-level prediction accuracy. This
experimental validation can be done by obtaining spatially-resolved ground-truths from immunohistochemistry (IHC).

Graph theory. Similar to [Parreno-Centeno et al., 2022], we can also resort to graph theory to analyse the cell-
cell interactions over a CRC tissue. This method consists of employing nuclei segmentation tools like CellVIT
[Horst et al., 2024] or CPP-Net [Chen et al., 2023] over the CRC WSI to build a cell-cell interaction graph. We can
then query this graph through knowledge bases like Neo4J to unravel tumour-immune cell dependencies that could be
exploited therapeutically. Thus, this would add an additional layer of interpretability analysis to our pipeline, which
would prove beneficial for guiding therapy.

Pan-cancer modelling Another direction of research worth exploring is predicting the G0-arrest state across cancer
tissues [Arslan et al., 2024]. We hypothesize that in this cross-tissue setting, the benefits of employing foundational
feature encoders like UNI would be more pronounced compared to our current setting where we only work with
CRC tissue. This is because the embeddings provided by foundational models are semantically rich given their
representational learning over massive amounts of cross-tumoral tissue, which aid in generalization better than standard
feature encoders like ResNet50, and cheaper to use if compared to custom training a feature encoder. This would
greatly increase the size and heterogeneity of our dataset, which allows us to perform more thorough evaluation, but
also introduce new challenges since the G0-arrest signature varies by tissue.

5 Conclusion

Our comprehensive benchmarking allows us to look back to our original research aims and confirm deep learning can
gauge the G0-arrest population solely from H&E CRC tissue. Ensembling CV models, using foundational feature
encoders, multimodal fusion of clinical features, introduction of spatial inductive biases and regression score prediction
bring advantages and disadvantages regarding the model’s predictive performance and elucidation of the model’s
internal mechanisms for making a decision. Ensembling and using foundational feature encoders generally provide
improved generalization. The fusion of clinical features slightly hampered test classification performance, but enabled a
thorough discussion of clinical features in the context of studying G0-arrest and relapse. Generated heatmaps provide
interpretable results regarding the spatial composition of G0-arrest cells, and graph-based constraints drive heatmaps to
be more biologically plausible reflected by more pronounced clusters of cell populations.

We also contribute to the computational histopathology community with our MIL pipeline, HistoMIL, to advance cancer
research, benchmarking and analysis. There is much work to explore, such as cross-tumoral tissue classification of
G0-arrest. We are intrigued to observe how deep learning can be further used to aid pathologists with understanding
the evolution of the tumor landscape. For reference, we release all our code (including data analysis, plots, scripts for
running experiments, among others) for executing our pipeline at https://github.com/awxlong/HistoMIL
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A 5-fold cross-validation results

Our cross-validation (CV) results for each feature encoder and MIL algorithm are shown at Figure 8 for the AUROC
metric and at Figure 9 for the F1. Uncertainty regions correspond to the standard deviations of the metric averaged
across folds, and these are spread across epochs. We notice much overlap amongst the regions of different feature
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Figure 9: Average F1 across folds per epoch shown per classifier. We label two "milestones" in the same manner as in
Figure 8, where we observe that the highest mean cross-validation F1 is not necessarily achieved at the end of training.

encoders, which indicates that during cross-validation, the use of foundational feature encoders didn’t show much
performance improvement.

Figure 8: Average AUROC across folds per epoch shown per classifier. We label two "milestones", which is the average
performance at the beginning of training, and in bold we show the highest mean cross-validation AUROC achieved
at the end of training to illustrate the improvement brought by learning. There is much overlap in CV AUROC’s
uncertainty regions, with occasional noticeable demarcation such as in d) where the ResNet50 encoder consistently
yields lower performance across epochs than its foundational model alternatives.

Our CV results help guide how we further explore multimodal fusion and regression by pruning the space of all possible
experiments to run, i.e., we avoid exhaustive ablation exploring multimodal fusion with all MIL algorithms and feature
encoders. From the plots, we generally observe that classifier consisting of the Prov-Gigapath and UNI feature encoders
have slightly higher mean performance than ResNet50. In addition, TransMIL is the one which achieves amongst the
highest CV AUROC (≈ 0.75) and highest mean CV F1-score (0.72± 0.06) (albeit it’s closely followed by CLAM and
DTFD-MIL). Because of this, we explore multimodal fusion of clinical features and outputting regression scores only
with TransMIL with the UNI feature encoder.

We only show the mean CV F1 across folds in Figure 10 because PCC is not available for the base TransMIL and
TransMILMultimodal, while AUROC is not available for TransMILRegression. In this regard, F1 provides a common
score to compare ablations of TransMIL.
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Figure 10: Average F1 across folds per epoch shown for ablations of TransMIL with UNI: TransMILMultimodal and
TransMILRegression. We label two "milestones" in the same manner as in Figure 8. a) is the same lineplot as Figure
9c’s UNI encoder. b) Interestingly, the average scores across folds is more stable, suggesting that multimodal fusion
stabilizes training across folds.

B Test results

Figure 11: Boxplot of test F1 scores obtained from the 5 independent optimal models per fold, per feature encoder,
evaluated over the test set. The often higher test scores (i.e. higher purple and teal bars) achieved by the UNI and
Prov-Gigapath feature encoders suggests better generalization capabilities brought by foundational feature encoders in
comparison to the standard ImageNet-pretrained ResNet50.

C Clinical feature selection and preprocessing

Clinical features are accessible for our 570 patients at TCGA. However, prior to processing, a lot of features are ignored
due to the any of the following reasons:

• biological irrelevance for predicting cell senescence: corresponds to features which are uninformative to
predict the G0-arrest label. This includes: name of the clinic in which the tissue was sourced, height, whether
patient consent was verified, and number of first degree relatives with cancer diagnosis.

• constant-valued variables: corresponds to features mostly filled with a constant value such as primary lymph
node presentation assessment where 98% of the values were YES.

• semantically-same variables: corresponds to features which arguably refer to the same measurements, and
thus were dropped to avoid multicollinearity. For example, if we include count of lymph nodes as part of our
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Figure 12: Boxplot of test F1 scores obtained from the 5 independent optimal TransMIL ablation models per fold,
trained using the UNI encoder, evaluated over the test set.

multimodal model, we dropped count of lymph nodes by H&E and by IHC. Similarly, we drop ICD-O-10 for
ICD-O-3, and exclude anatomic neoplasm subdivision because of ICD-O-3 site.

Algorithm 1 Feature selection based on shadow features adapted from [Zukic, 2024].
1: Input: Xtrain, ytrain, classifier, niter = 100, threshold= 42
2: Output: indexes of features selected from Xtrain

3: n, d = Xtrain.shape
4: scores = zeros(d) ▷ zero vector of shape d
5: Xtrain = join(Xtrain,rand_col) ▷ join a random column of features to Xtrain

6: scale(Xtrain) ▷ min_max, normalize, robust_scaling, among others
7: for i = 0 : niter do
8: classifier(random_state = i).fit(Xtrain,ytrain)
9: feature_importances = get_feature_importances(classifier)

10: rand_col_imp = feature_importances[-1] ▷ Get the random column feature’s importance
11: scores[argswhere(feature_ importances > rand_col_imp)] ±1 ▷ Count the times in which a feature’s

importance exceeds that of the random column feature’s importance
12: end for
13: return argswhere(scores > threshold)

After this, preprocessing occurs as follows:

1. We split the train-validation-test set for the clinical patient dataset, and take care in normalizing the continuous
variables avoiding train-validation and train-test leakage. We save the features as tensors per patient for each
CV fold and test set which is accessed separately during model training and evaluation.

2. A lot of variables concerning radiation therapy, e.g., drug administered, and its amount administered were
dropped since they have a greater than 60% missing rate.

3. Variables like race and histological site have some of their values grouped to address class imbalance. For
example, in our TCGA clinical dataset’s training split, the variable ’race’ consists of 4 values with ratios
indicating severe imbalance: White (76%), Black (20%), Asian (3%) and American Indian (1%). We thus
group ’Black’, ’Asian’ and ’American Indian’ under ’Non-White’ and treat ’race’ as a binary variable.

4. One variable per each one-hot encoded categorical variables is dropped to avoid multicollinearity. This is
valid due to the mutual exclusivity of the values of the categorical variables. For example, one-hot encoding
Pathological Stage with 9 possible values leads to the binary variables Pathological Stage I, Pathological Stage
II(A, B), Pathological Stage III(B,C), and Pathological Stage IV(A) being formed. For example, a value of 1
for Pathological Stage IIA and 0 for the rest indicates this patient’s CRC tissue is in Pathological Stage IIA.
Since we assume cancer tissue cannot be at multiple stages simultaneously, and can only be in either of the
described stages, Stage I is dropped to avoid collinearity as it is equivalent all remaining binary variables being
set to 0.

5. One-hot encoding yields 30 features. We run a feature selection algorithm [Zukic, 2024] which selects 27 out
of these 30 features. Feature selection (Algorithm 1) consists of training a classifier (in our case XGBoost)
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where a random feature vector is concatenated to the above preprocessed dataset to predict g0-arrest. Feature
importances are computed, and for those with importance scores below that of the random feature vector’s are
recorded in a counter. Such process is repeated for n = 100 times, and we get rid of 3 features ’Pathologic
Stage IIC’, ’Pathologic Stage IIIA’, and ’Pathologic Stage IVB’ which for more than 42 times, their feature
importances didn’t exceed that of the random feature vector’s.

6. This is finally followed by expert consultation with a computational biologist to ensure their relevance for
multimodal fusion in our model.

D Hyperparameters of the MIL models benchmarked

We proceed in stating relevant hyperparameters of MIL models benchmarked.

Epoch Initial learning
rate, and weight

decay

Optimizer Learning rate scheduling
policy

Additional
hyperparameters

AttentionMIL 32 2 × 10−5, 1 ×
10−2

Adam fit-one-cycle with a maximum
learning rate of 1 × 10−4,

and the first 25% of the cycle
with increasing learning rate

(Wang et al., 2022)
Transformer 8 2 × 10−5, 2 ×

10−5
AdamW cosine annealing decaying

over training epochs with a
minimum learning rate of

1 × 10−6

TransMIL 32 2 × 10−5, 1 ×
10−2

AdamW same as Transformer

DTFD-MIL 42 2 × 10−5, 1 ×
10−4

Adam for both tiers learning rate decay starts at
epoch 25 for both tiers by a

factor of 0.2

5pseudo-bags

CLAM 42 2 × 10−4, 1 ×
10−5

Adam same as Transformer dropout of 0.25 and
8 patches for
instance-level

clustering
CAMIL 30 2 × 10−5, 2 ×

10−5
Adam learning rate is reduced by a

factor of 0.2 once a plateau in
performance is identified

GraphTransformer 42 1 × 10−3, 5 ×
10−4

Adam learning rate decay starts at
epoch 20 by a factor of 0.1

TransMILMultimodal same as TransMIL 27 clinical features
TransMILRegression same as TransMIL MSE loss

Table 3: Hyperparameters adopted per MIL algorithm. For each algorithm, we embed the source where the hyperparam-
eters are mentioned. We avoid hyperparameter tuning, and this includes not performing extensive neural architecture
search. Unless stated otherwise, all models are trained by minimizing the BCEWithLogits loss. TransMILRegression is
trained with the MSELoss.

E Interpretability analysis of Ensemble TransMIL with UNI feature encoder
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Figure 13: Heatmaps generated by the Ensemble TransMIL with the UNI feature encoder. We provide correct and
incorrect classifications, and below each heatmap we append a sample of 6 patches according to their attention scores
contributing to the slide-level prediction. For TP and FP, these patches have the highest attention scores explaining a
positive prediction. For TN and FN, the patches have the lowest attention scores explaining a negative prediction.
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Figure 14: Side-by-side comparison of heatmaps generated by ablations of TransMIL with the UNI feature encoder.
Below each heatmap is a sample of 4 patches with the highest attention scores contributing to the prediction of G0-arrest,
and are all TP predictions. For TransMIL and TransMILMultimodal, this corresponds to a prediction of 1, while for
TransMILRegression, this is a negative score of −0.39 with ground truth −2.1 binarized at ≤ 0
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