
Review: A Deep Learning Approach to1

Antibiotic Discovery2

Technical background, research approach, and results of the paper3

Motivation4

Stokes et al. [9], hereon referred to as "the authors", address the global health concern5

of the proliferation of antibiotic-resistant bacteria by leveraging artificial intelligence (AI)6

for large-scale, high-throughput drug screening.7

Antibiotics are amongst the essential tools to fight against microbial infections.8

However, the Achilles’s heel of medicine is that existing antibiotics can pressure bacteria9

to adapt to them through mutation and passing antibiotic-resistant determinants,10

rendering them useless. Thus, re-purposing and discovering new drugs to mitigate the11

proliferation of them are urgent to prevent deaths associated to antibiotic-resistant12

infections [9].13

There is a vast chemical space (in the order of 1060 compounds) to explore for possible14

candidates [6]. Nonetheless, most of this search space consist of non-usable biochemicals15

which can not be anticipated beforehand, thus would render its exploration and testing a16

waste of resources. Traditional means of screening can not scale beyond millions of17

compounds, and may suffer from the de-replication problem: same compounds are18

repeatedly discovered. A tangential problem is to find compounds structurally similar to19

existing ones, which could be deleterious in the long-term because bacteria that20

developed resistance to a drug may well be resistant to analogues[3]. An alternative that21
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can bypass this flaw resorts to in silico methods, i.e., computer simulations, in particular22

deep-learning to exploit its feature-extraction capabilities to model complex relationships23

[1]. In silico methods vectorize molecules to obtain a representation that can be processed24

by a machine, and can conveniently scale. These features can be handcrafted based on25

domain-expertise, denoted as "molecular fingerprints", and they can be obtained from26

Dragon descriptors, Morgan fingerprints or using the open-source package RDKit [10].27

However, domain-knowledge is often disputable, and experts may disagree on what are28

the putative features of a molecule. Another approach is to have a graph representation of29

a molecule whereby its hidden state is learnt via a deep graph convolutional neural30

network in a downstream, prediction task. The strength of a graph representation31

includes retaining the geometrical information (e.g spatial atom-atom bonding) of the32

molecule that could be relevant to determine its function.33

Model architecture and dataset34

The authors adopt a hybrid architecture, called Chemprop1, that leverages both35

molecular fingerprints and learn a hidden representation for each molecule, combining36

the strengths of both worlds: the incorporation of expert knowledge, and flexibility of37

learning task-dependent, global hidden representations. It is a Directed Message-Passing38

Neural Network (DMPNN), a variant of the Message-Passing Neural Network, where39

message passing is asymmetrical, and is done among bonds instead of atoms in order to40

avoid redundant messages[10]. The authors frame drug discovery as a binary function41

classification task given a molecule, and validate their model’s findings through rigorous42

wet-lab testing (see Figure 1).43

1 Code available at: https://github.com/chemprop/chemprop/tree/master
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FIG 1 a) A depiction of the DMPNN representing a molecule. Each vertex is an
atom, and each edge is a bond. Messages of hidden states are passed along edges
(e.g. the yellow and read arrows at the top). b) denotes the training and
validation phase of the DMPNN, making predictions for 108 molecules. c) and d)
describe the screening of such molecules based on prediction scores, structural
similarity and toxicity to filter the most promising candidates, along with
experimental validation in the wet lab. Figure edited and extracted from [9]

First, they train the DMPNN in a supervised setting to identify molecules that can45

inhibit the growth of Escherichia coli. They collect a dataset D = {X, y} consisting of46

|X| = 2335 unique molecules, each annotated with y ∈ {0, 1} using 80% growth inhibition47

as a cut-off. This results in an imbalanced dataset with only 120 molecules with growth48

inhibitory activity. It is split according to a ratio of 80%/20%/20% into49

training/validation/testing sets.50

A molecule is a group of atoms held by bonds. Each is represented as a directed graph51

G = (V, E), where each v ∈ V is an atom, and each evw ∈ E is an edge between vertices52

v, w representing a bond, where evw ̸= ewv. Both atom and bond have molecular53

fingerprints, as well as associated hidden representations hv, hvw that are obtained via54

learnable matrices W = {Wi, Wm, Wa}. The goal of Chemprop, as described by Yang et al.55
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[10], is to learn the optimal hidden representations that can be used to predict a functional56

property of the molecule, which in this work is growth inhibition of E. coli. A forward57

computation and training iteration of the network for a single molecule (Figure 1a) is58

described as follows:59

1. Hidden state features for each bond are initialized at timestep t = 0:60

h0
vw = τ(Wicat(v, evw), where v is the RDKit feature for the atom, and evw is the61

RDKit feature for a bond. Wi ∈ Rh×hi is a learnable matrix of parameters associated62

to the hidden state of some edge ei, cat(·) is a function that concatenates the atom and63

bond features, and τ is the ReLU activation function.64

2. Messages between bonds mt
vw and hidden states ht

vw are passed and updated,65

respectively, given simple heuristics:66

mt+1
vw = ∑

k∈N(v)\w
ht

kv, where the message is an aggregation of hidden representations,67

and N(v) are the neighbors of atom v.68

ht+1
vw = τ(h0

vw + Wmmt+1
vw ), where Wm ∈ Rh×h is a learnable matrix.69

3. Such message passing occurs for t ∈ 1, ..., T through the whole graph, followed by a70

final message mv that returns the hidden representation hv for an atom v of the71

molecule by summing the bond features as per:72

mv = ∑
k∈N(v)

hT
kv73

hv = τ(Wacat(v, mv)), where Wa ∈ Rh×h is a learnable matrix.74

4. The hidden representations for all atoms are obtained and aggregated to h.75

h = ∑
v∈V

hv76

5. The output ŷ of the D-MPNN is then computed as a function of h. In order to ensure77

generalization, this prediction is made by also incorporating 200 global features h f78

obtained via RDKit:79

ŷ = f (cat(h, h f )), where f (·) is a feed-forward neural network.80

6. A loss function, in this case the binary cross-entropy, is computed based on the81

predicted output ŷ and the ground truth value y, where y ∈ y. Then, its gradient is82

backpropagated to learn the optimal parameters Wi, Wm, Wa.83
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Results84

The authors’ final prediction is an average of an ensemble of 20 classifiers trained with85

different parameter initializations. Hyperaparameters are estimated using Bayesian86

optimization. Despite the class skewness, the model achieves a high test accuracy87

measured by the ROC-AUC of 89.6%, evidencing its robustness. This is further reassuring88

given how their model is the highest performing in ablation studies examining different89

molecular fingerprints and architectures.90

Then, the authors use the DMPNN to screen more than 6000 molecules from the Drug91

Repurposing Hub (Figure 1cd). The most promising candidate according to prediction92

score, structural dissimilarity to known antibiotics, and predicted toxicity is named as93

halicin. They further validate it with multiple assays on a range of bacteria, as well as94

through rat animal models, observing long-term, broad-spectrum antibacterial activity [4].95

Critical analysis: limitations and future research directions96

Efficient high-throughput screening97

The authors successfully leverage geometric deep learning as spatial-aware, pattern98

extractors in order to tackle an extremely challenging problem of drug repurposing, given99

the highly heterogeneous behavior of a drug’s biochemicals and the sheer scale of their100

search space. They successfully overcome the bottleneck of traditional means as101

evidenced by how they then screened more than 107 million molecular structures from102

the ZINC15 database in a matter of 4 days, thus greatly reducing the cost of filtering103

potential candidates through conventional means. This has several real-world104

applications such as aiding biochemical labs in highly-efficient, fast screening of drugs to105

fight disease. Furthermore, extensive in-silico and wet-lab testing ensure the potential and106

safety of the predicted halicin. In addition to the above characteristics such as being107

structurally divergent, halicin has also been touted for its unconventional mechanism of108

action. It disrupts the flow of protons across the cell membrane, instead of more109

traditional approaches like blocking enzymes involved in protein synthesis [4]. This is an110
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unanticipated gain that could arguably be only predicted by a deep learning system that111

can extract patterns beyond human comprehension from the training data.112

Black-box architecture113

Despite these strengths, their model has a major flaw: its predictions remain elusive to114

interpretation by the biomedical personnel. This is concerning, given that the authors can115

not guarantee that their model is not learning spurious correlations [1] from the training116

data, e.g., maybe halicin was a top candidate because an irrelevant bond frequent in117

training was observed. Furthermore, the model’s parameters can not explain how118

physico-chemical properties of halicin correlate to its functional properties.119

One powerful approach to mitigate this is semi-supervision: to employ generative120

pretraining over molecular databases2 so that the model can learn a-priori a global latent121

representation of what are molecules. This graph autoencoder can then be finetuned to a122

downstream task of function classification, borrowing its internal representation to guide123

learning. Ad-hoc processing of such task-dependent latent representation, using124

techniques such as principal component analysis as in [8, 7], coupled with SHAP value125

methods that explore correlations between the input space and hidden activations of the126

model can yield mechanistic insight into why it predicts certain compound. For example,127

maybe the presence of certain subgraph of atoms is biologically essential to inhibit128

bacterial growth. The latent representation could also help cluster drugs with similar129

properties, enabling the model to make predictions beyond a binary label. For more130

explainable methods please see Jiménez-Luna et al. [1]. Such pretraining could also yield131

additional benefits such as robustness to the the original dataset’s small size and heavy132

skewness towards samples with no inhibition activity. This is important since despite133

achieving high test accuracy on the original dataset, the authors later report only 51.5%134

when evaluated on the Drug Repurposing Hub.135

2 There are many datasets of molecules, such as those benchmarked in [10]
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Multimodal integration for contextualized predictions136

Even if the black-box nature of deep learning is mitigated, it is noted that authors’137

adopted approach can only make context-agnostic predictions of a molecule’s ability to138

inhibit E. coli’s growth. For example, halicin may not universally inhibit its growth, such139

as when it lives in the human gut system repleted with other microorganisms. An exciting140

line of research is to integrate multiple modalities of data in order to make contextualized141

predictions of a molecule’s functional property. This is a great opportunity for142

chemoinformatics given the need to unify the deeply fragmented public biochemical143

databases available, spanning datasets over drug-repositioning, drug-target prediction,144

drug-drug interaction datasets [6], as well as a drug’s side effects [2].145

Such effort to train models for contextualized predictions synergize well with the146

demands of transparency because a prediction would then be beyond a single probability147

value of a label. It would also depend on the aforementioned factors with potential148

benefits such as identifying molecules that selectively target harmful strains of E. coli. This149

is important because it is well known that most strains of E. coli are harmless and aid the150

digestive system of humans [5], while others can cause food poisoning. Therefore, halicin151

may not be a good candidate if it indiscriminately kills E. coli.152

It is clear that a lot of work is yet to be done on building transparent models for drug153

repurposing beyond highly performing black-boxes. The materialization of explainable154

models that can provide contextualized outputs can revolutionalize biomedical research,155

as they earn the trust of researchers whilst being highly performing. They can be156

deployed into real-world settings like clinical labs to aid rapid and efficient scientific157

discovery of drugs to tackle diverse global health concerns. In addition to fighting158

antibiotic resistance, applications can include repurposing existing drugs to fight viral159

variants, or mitigate neurological diseases like Alzheimer’s or Parkinson’s.160
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