

# — Outline —

| Motivation | Research<br>question &<br>Contributions | Research<br>Progress | Questions<br>and<br>Feedback |
|------------|-----------------------------------------|----------------------|------------------------------|













## **Divergent paths**

### **Scaling hypothesis**

 Deep learning models need more data and computational power

### **Integration hypothesis**

 School of symbolism and connectionism have properties that can complement each other's faults

# Complementarity vs. dichotomy





"NeSy AI is in need of standard benchmarks ... [to] provide a fair comparative evaluation of different approaches...(Garcez & Lamb, 2020)

### Contributions

#### **Theoretical side:**

- Unified framework for NeSy model
- Unified framework for benchmark

#### Practical side:

 Devise common benchmark for testing current and future models



### Yi, K. et. al (2019)

# Manhaeve, R. et. al (2018)

Figure 2: Parameter learning in DeepProbLog.

| Frameworks           | Inference          | Syntax                                   | Semantics                                                        | Learning                    | Representations             | Paradigms                                       | Tasks                                                                                                       |
|----------------------|--------------------|------------------------------------------|------------------------------------------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                      | (P)roof<br>(M)odel | (P)ropositional<br>(R)elational<br>(FOL) | (M)inimal<br>(S)table<br>(C)lassical<br>(F)uzzy<br>(P)robability | (P)arameters<br>(S)tructure | (S)ymbolic<br>(Sub)symbolic | Logic (L/l)<br>Probability (P/p)<br>Neural(N/n) | (D)istant (S)upervision<br>(S)emi (S)upervised<br>(KGC)ompletion<br>(G)enerative<br>(K)nowledge (I)nduction |
| αILP 109             | P+M                | FOL                                      | S + P                                                            | P + S                       | S                           | Ln                                              | KI                                                                                                          |
| ∂ILP <u>38</u>       | Р                  | R                                        | M + F                                                            | $\mathbf{P} + \mathbf{S}$   | S                           | Ln                                              | DS + KI                                                                                                     |
| DeepProbLog 72       | P+M                | FOL                                      | M + P                                                            | P+S                         | S+Sub                       | LpN                                             | DS + KI                                                                                                     |
| DeepStochLog129      | Р                  | FOL                                      | M + P                                                            | Р                           | S                           | LpN                                             | DS + SS                                                                                                     |
| DiffLog[110]         | Р                  | R                                        | M + F                                                            | P+S                         | S                           | Ln                                              | KI                                                                                                          |
| DL2[39]              | Μ                  | Р                                        | $\mathbf{C} + \mathbf{F}$                                        | Р                           | S+Sub                       | lN                                              | DS + SS                                                                                                     |
| DLM[77]              | М                  | FOL                                      | $\mathbf{C} + \mathbf{F} + \mathbf{P}$                           | Р                           | S                           | lPN                                             | SS + KGC                                                                                                    |
| LRNN[140]            | Р                  | R                                        | M + F                                                            | P + S                       | S + Sub                     | LN                                              | KGC + KI                                                                                                    |
| LTN6                 | М                  | FOL                                      | $\mathbf{C} + \mathbf{F}$                                        | Р                           | S + Sub                     | lN                                              | DS + SS                                                                                                     |
| NeuralLP[134]        | Р                  | R                                        | M + F                                                            | Р                           | S                           | Ln                                              | KGC + KI                                                                                                    |
| NeurASP[135]         | P+M                | FOL                                      | S + P                                                            | Р                           | S                           | LpN                                             | DS                                                                                                          |
| NLM[34]              | Р                  | R                                        | M + F                                                            | P + S                       | S                           | Ln                                              | KGC + KI                                                                                                    |
| NLog[118]            | Р                  | R                                        | M + P                                                            | Р                           | S                           | LpN                                             | DS                                                                                                          |
| NLProlog[128]        | Р                  | R                                        | M + P                                                            | P + S                       | S + Sub                     | LpN                                             | KGC + KI                                                                                                    |
| NMLN 78              | Μ                  | FOL                                      | $\mathbf{C} + \mathbf{P}$                                        | P + S                       | S + Sub                     | lPN                                             | KGC + G                                                                                                     |
| NTP[100]             | Р                  | R                                        | M + F                                                            | P + S                       | S + Sub                     | Ln                                              | KGC + KI                                                                                                    |
| RNM 76               | Μ                  | FOL                                      | $\mathbf{C} + \mathbf{P}$                                        | Р                           | S                           | IPN                                             | SS                                                                                                          |
| SBR32                | Μ                  | FOL                                      | $\mathbf{C} + \mathbf{F}$                                        | Р                           | S+Sub                       | lN                                              | DS + SS                                                                                                     |
| Scallop 59           | Р                  | FOL                                      | $\mathbf{M} + \mathbf{P}$                                        | Р                           | S                           | LpN                                             | DS                                                                                                          |
| SL[130]              | Μ                  | Р                                        | $\mathbf{C} + \mathbf{P}$                                        | S                           | S                           | LpN                                             | SS                                                                                                          |
| Slash <sub>111</sub> | P+M                | FOL                                      | S + P                                                            | Р                           | S                           | LpN                                             | DS +SS                                                                                                      |
| TensorLog[18]        | Р                  | R                                        | M + P                                                            | Р                           | S                           | LpN                                             | DS + KGC                                                                                                    |

| category                       | number of papers | papers     |
|--------------------------------|------------------|------------|
| [symbolic Neuro symbolic]      | 13               | 9-17       |
| [Symbolic[Neuro]]              | 9                | 15, 18-23  |
| [Neuro ∪ compile(Symbolic)]    | 10               | 24-33      |
| [Neuro $\rightarrow$ Symbolic] | 13               | 8,23,34,44 |
| [Neuro[Symbolic]]              | 0                | N/A        |
| Ta                             | able 2           |            |

Kautz categories paper count. Two paper fit two categories.

#### Md K. Saker et al., 2021

Table 1: Logic-based NeSy frameworks according to the 6 dimensions outlined in the paper.

Luc De Raedt et al., 2020 (revised on May 21, 2023)



Questions in CLEVR test various aspects of visual reasoning including attribute identification. counting, comparison, spatial relationships, and logical operations.



Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere?

Q: There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere?

Q: How many objects are either small cylinders or red things?

### Johnson, J. et. al (2017)

Each guestion in CLEVR is represented both in **natural language** and as a **functional program**. The functional program representation allows for precise determination of the reasoning skills required to answer each question.



**CLEVR** function catalog value ----- objects Filter <attr> And objects objects Or yes/no Exist Count object ----> Query <attr> value value yes/no Equal number Equal yes/no Less / More numbe → Same <attr> objects object -

Relate

Unique

objects

object

value -

object

What color is the cube to the right of the yellow sphere?

Sample tree-structured question:



- thing and on the left side of the green object?
- Exist, Count, Compare Integer, Query Attribute, and Compare Attribute,

#### CLEVR-Hans3 (Stammer, et. Al 2021)





Query Attribute, and Compare Attribute,





CLEVRER (Kexin, Yi, et. al, 2020)



#### **II. Explanatory**

٠

**Q**: Which of the following is responsible for the gray cylinder's colliding with the cube? a) The presence of the sphere

b) The collision between the gray cylinder and the cyan cylinder A: b)

- b) The cyan cylinder collides with the red object IV. Counterfactual
- **Q:** Without the gray object, which event will not happen? a) The cyan cylinder collides with the sphere b) The red object and the sphere collide A: a), b)

#### Sort-of-CLEVR (Santoro, A., et. Al (2017))



### Dong, H. et. al (2019)



The Hanging Gardens, in [Mumbai], also known as Pherozeshah Mehta Gardens, are terraced gardens ... They provide sunset views over the [Arabian Sea] ...

**Mumbai** (also known as Bombay, the official name until 1995) is the capital city of the Indian state of Maharashtra. It is the most populous city in **India** ...

The **Arabian Sea** is a region of the northern Indian Ocean bounded on the north by **Pakistan** and **Iran**, on the west by northeastern **Somalia** and the Arabian Peninsula, and on the east by **India** ...

**Q:** (Hanging gardens of Mumbai, country, ?) **Options:** {Iran, India, Pakistan, Somalia, ...}

### Barret, D. et. al (2018)



#### Dataset Curated vs. Prescribed



Object-centric reasoning
Knowledge graph reasoning
Counterfactual reasoning
Task-driven reasoning
Abstract reasoning



# Taxonomy of NeSy benchmarks

| Nature of Task                      | Format                                                               | Input-output during inference | Datasets                                                                                                          |
|-------------------------------------|----------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Object-centric relational reasoning | Natural language description of scenes with some predicates in .json | Query and image - answer      | CLEVR<br>CLEVR-CoGenT<br>CLEVR-Hans<br>Kadinsky Patterns                                                          |
| Task-driven reasoning               | Specify a set of axioms and the model completes a goal               | Axioms-goal completion        | Linear regression (real state<br>dataset)<br>Clustering (Badreddine, S. et<br>al., 2021)<br>Block's world problem |
| Knowledge graph reasoning           | NL description of knowledge OR set of facts and relations            | Query-Answer                  | Wiki-hop KB<br>Med-Hop KB                                                                                         |
| Object centric abstract reasoning   | IQ like images and the model must complete the pattern               | Image - Image                 | Procedurally Generated<br>Matrices                                                                                |
| Counterfactual reasoning            | Hypothetical queries                                                 | Video and query - answer      | CLEVRER                                                                                                           |

# SaSSy-CLEVR Overview

| Object centric relational reasoning | Task driven<br>reasoning | Knowledge graph<br>reasoning | Abstract reasoning | Counterfactual reasoning  |
|-------------------------------------|--------------------------|------------------------------|--------------------|---------------------------|
| CLEVR-Hans-3                        | Elaborate on             | Synthetize KG from           | Elaborate on Sort- | Hypothetical queries over |
|                                     | CLEVR-Hans3              | CLEVR-Hans3                  | of-CLEVR           | CLEVR                     |





If the blue metal cube is taken, how many objects are left?

### CLEVR-Hans3 for objectcentric and KG reasoning

- Visual confounder in test set
- Generate KG



# Task-driven reasoning

- Possible actions:
  - Move(object, X, Y, Z)
  - Add(object, shape, color, size, color)
  - ChangeColor(object, color)
  - Remove(object)



- Evaluated using Hungarian Loss
- More rules?

## Abstract reasoning: elaborating Sort-of-CLEVR

- Attributes:
  - 2 shapes
  - 7 colours
  - 2 sizes
  - Maximum 10 objects per panel
- 5-panel image sequences: model must complete the 5<sup>th</sup> panel
  - Arithmetic progression
  - Clockwise movement
  - Alternating
- Visual confounder during testing
  - Colour
  - Shape
  - Rotation?





# Counterfactual reasoning

- Query Attribute: What color is the thing right of the red sphere?
- Counting: How many red cubes are there?
- Existence: Are there any cubes to the right of the red thing?
- Compare Integer: Are there fewer cubes than red things?

- Query Attribute: What color is the thing right of the red sphere if the blue cube is removed?
- Counting: how many objects will there be if the blue metal cube is removed?
- Existence: Will there be any cubes to the right of the red thing if the blue cube is removed?
- Compare Integer: Will there be fewer cubes than red things if the red cube is removed?

# Appendix

#### Catalogue of Benchmarks based on Five Major Reasoning Tasks

| Nature of Task | Input-Output       | Challenging Aspects    | Examples       |
|----------------|--------------------|------------------------|----------------|
| Object-        | Images and Query - | Confounding            | CLEVR,         |
| Centric        | Answer             | concepts; out-         | Kandinsky      |
| Relational     |                    | of-distribution        | Patterns,      |
| Reasoning      |                    | generalization;        | CLEVR-Hans     |
|                |                    | interpretability       |                |
| Multi-Hop      | KB and Query - An- | Satisfiability; search | ChEMBL,        |
| Reasoning      | swer               | efficiency             | Wiki-Hop,      |
|                |                    |                        | MedHop, babi   |
| Task-Driven    | Logic program and  | Satisfiability; search | Block's        |
| Reasoning      | Query - Answer     | efficiency             | World, Sorting |
|                |                    |                        | Arrays, Coin   |
|                |                    |                        | Ball           |
| Object-        | Image - Image      | Patterns in images     | PGM            |
| Centric        |                    | are implicit; inter-   |                |
| Abstract       |                    | pretability            |                |
| Reasoning      |                    |                        |                |
| Counterfactual | Image/KB and       | Objects in the query   | CLEVRER        |
| Reasoning      | Query - Answer     | are absent in dataset; |                |
|                |                    | interpretability       |                |
|                |                    |                        |                |

| NeSy models  | Neural components   | Symbolic compo-        | Categorization |
|--------------|---------------------|------------------------|----------------|
|              |                     | nents                  |                |
| DreamCoder   | Program recognition | Program synthesis      | {[Ne]}HOL or   |
|              | module              |                        | {[Ne]}{[HOL]}  |
| NeSy-Visual  | Mask RCNN for im-   | SQL-like Query ex-     | {[Ne]}HOL      |
| Question     | age recognition +   | ecutor                 |                |
| Answering    | LSTM to parse ques- |                        |                |
| (VQA)        | tions               |                        |                |
| αILP         | Pretrained Slot At- | Differentiable         | Ne{[FOL]}      |
|              | tention             | forward reasoner       |                |
| DeepProbLog  | User-specified neu- | ProbLog using prob-    | Ne{[FOL]} or   |
|              | ral network         | abilistic circuits for | {[Ne]}{[FOL]}  |
|              |                     | scalable inference     |                |
| Neural       | Standard feedfor-   | Probabilistic infer-   | Ne{[FOL]}      |
| Markov Logic | ward neural net-    | ence                   |                |
| Networks     | works to represent  |                        |                |
| (NMLM)       | factor graph        |                        |                |
| Logic Tensor | User-specified neu- | User-specified logic   | Ne : {Fuzzy    |
| Networks     | ral network         | program in Real        | FOL}           |
|              |                     | Logic                  |                |
| Relational   | Neural Markov       | Weighted proba-        | Ne : {Fuzzy    |
| Neural Ma-   | Logic Networks      | bilistic inference     | FOL}           |
| chine        |                     |                        |                |