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Abstract

This is a proof-of-concept project where we
propose a pipeline for medical visual question
answering on the MEDIQA-M3G benchmark
on dermatology cases. It is inspired by liter-
ature on multi-agent large language models
which leverages multiple, interoperable mod-
els which can discuss with each other. Our
pipeline is highly customizable, and can be
tailored for various purposes, such as adopt-
ing parameter-efficient finetuning techniques in
low-resource settings, or performing retrieval
augmented generation for knowledge-based an-
swer generation.

1 Introduction

1.1 Motivation

Dr. Eric Topol once remarked that artificial intel-
ligence models are not meant to replace doctors,
but rather assist them in their tedious workloads
so that they can rekindle their humane connection
with patients (Topol, 2019). Indeed, the advent
of deep learning (DL) continues to provide un-
precedented opportunities for clinicians to stream-
line their workflows in the many aspects of public
healthcare.

One such area is telehealth, defined as remote
patient care delivery through electronic means such
as online visits. It provides opportunities such as
cost-effective communication means between pa-
tient and clinician, but also brings new challenges
such as increased workloads for physicians who
also have to balance office visits (Bishop et al.,
2013), or ensuring the quality of electronic visits
can match their in-person counterparts. Such chal-
lenges resonates with us until this day, especially
given global COVID 19 epidemic which acceler-
ated the maturation of digital health portals (Yim
et al., 2024).

The adoption of Artificial Intelligence (AI) tech-
nologies such as DL helps address many of the

challenges surrounding telehealth. In particular
for tasks like automatic response generation, it
has prospects of accurately and timely giving pa-
tients a first-hand diagnostic account of their condi-
tion, and/or giving physicians suggestions to their
patients workflows, thus alleviating work burden
(Yim et al., 2024). Furthermore, AI adoption can
address the shortage of medical personnel, espe-
cially given the World Health Organization (WHO)
estimated that over 45% of the countries across the
globe have less than one physician available per
1000 population (Organization, 2019).

There is much prior work in DL for automatic
response generation in healthcare, such as in mul-
timodal visual question answering (VQA), which
aims at response generation through a combination
of imaging and text modalities. The MEDIQA-
2024 Multilingual & Multimodal Medical Answer
Generation (M3G) Shared Task is a benchmark
aimed at evaluating multimodal approaches. It
focuses on visual question-answer generation lo-
calized to dermatology cases, evaluated in 3 lan-
guages: English, Chinese, and Spanish (Yim et al.,
2024).

There are many approaches to solve the bench-
mark, such as prompting proprietary multimodal
models through API calls, or engineering a pipeline
and training them on the MEDIQA-2024 dataset.
In the former approach, a plethora of powerful
vision-language models have been proposed over
the years, which can be classified as either 1) API
models like the families of GPT-4, Claude and
Gemini, or 2) open-sourced models like LLAVA,
Pixtral, Qwen, Molmo, among others (Deitke et al.,
2024). The latter approach, albeit more difficult,
enables more flexible exploration of model archi-
tectures, and addressing practical clinical concerns
such as memory-efficiency and deployment in edge-
devices. In this work, we propose a pipeline as a
proof-of-concept for medical visual question an-
swering.
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1.2 Literature Review

Open-ended answer generation: Prior work in
medical-VQA often focus in structured answers
given a question, such as choosing the correct an-
swer from multiple choices. Because the answers
follow a strict syntax, this essentially treats VQA
as a text classification task. The alternative consists
of free-form answer generation, with approaches
such as MedFuseNet which consists of a general
pipeline of image feature extraction, question fea-
ture extraction, a feature fusion module, and an
answer prediction module (Sharma et al., 2021).
These general blueprint underlies much of the mul-
timodal VQA architectures, and one can experi-
ment with different existing models to fit in the
pipeline.

Parameter-efficient finetuning (PEFT): Train-
ing each of the above blueprint components from
scratch can be prohibitively expensive and imprac-
tical given the plethora of readily available open-
source models which have been pretrained on a
large corpora of biomedical data. There exists
many resource-efficient finetuning methods, like
last-layer transfer, where earlier layers of a model
(often encoders, or transformers) remain frozen,
while only last layers are learnable. One can also
add learnable matrices to an existing architecture
or to the learning method, and only fine-tune these
additional matrices; differences in how these matri-
ces are added to the architectural components and
where to add them in the optimization procedure
lead to different finetuning approaches like LoRA,
prefix tuning (van Sonsbeek et al., 2023), sparse
adapter (Hao et al., 2024), or prompt tuning of the
language model component (Lester et al., 2021).

Society of minds: The general trend in DL
research is to propose a single architecture which
can achieve state of the art (SoTA) performance
on a well established benchmark. Different pro-
posed models carry their advantages and limita-
tions. For example, a VQA model with a vision
encoder pretrained on rare skin lesions may answer
queries more accurately from patients with these
edge cases, but perform badly on common lesions.
Another VQA model (which could be an ablation
of the former) may perform better at spotting nor-
mal skin lesions and perform badly on rare diseases.
A question which arises is how can we combine
their strengths and address each other’s limitations,
akin to members of a team compensating for each
other’s level of expertise. One approach is to com-

bine multiple VQA models to leverage their inter-
operability so that they can discuss with each other
(Zhuge et al., 2023), transitioning from a monolith
model to a manifold of models. Since medicine
is inherently a highly collaborative field, we can
draw inspiration from the literature on multi-agent
large-language models (LLMs) to assemble vari-
ous VQA models to cooperate with one another to
answer a patient’s query, instead of resorting to the
"SoTA" candidate. Research on multi-agent LLMs
has shown various benefits of building this collab-
orative environment, such as improving factuality,
and debating to ensure consistency of ideas (Guo
et al., 2024).

2 Methodology

The MEDIQA-M3G is a benchmark collected from
Chinese dermatology cases sourced from AiAiYi.
For each anonymized patient, we’re provided a
stack of dermatological images I, a unique input
question in natural language Q, along with a list
of answers A given by queried specialists. Both
question and answers are provided in Chinese, En-
glish and Spanish, where the latter languages are
GPT-4 based translations in the train-split, and med-
ical expert translations in the test-split. For some
answers, we’re provided rankings based on the ex-
pertise of the specialists, reflecting their credibility.
There is a variable amount of images and answers
within and across patients. From a technical per-
spective, this constrain us to use a batch size of 1
as datapoints can not be stacked. Furthermore, for
training purposes, we apply a preprocessing step
where ensure there is the same amount of answers
and images per patient. If a case has more images
than answers, we upsample answers by copying the
longest answers assuming they contain more infor-
mation such as a justification for a diagnosis, and
thus is of higher quality. If a case has more answers
than images, then we augment images by apply-
ing random data augmentations techniques such as
horizontal flip, changing brightness, contrast, rota-
tion, resizing, cropping, blurring, or adding random
Gaussian noise (Figure 1).

Given this context, we propose the following
proof-of-concept framework for addressing med-
ical VQA. Figure 2 depicts our training regime.
For each VQA model of the society, we aim
to find optimal parameters θ∗ for a model by
maximizing the conditional log-likelihood θ∗ =
argmaxθ

∑N
i=1 log pθ(Ai|Q, I). As an example,
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Figure 1: Depiction of a patient case in the MEDQA-M3G Shared Task. In this example, there were more answers
than images. Two of the screenshots are augmented from a random sample of images, and this is done to match the
amount of images with answers per batch for technical purposes.

we use the language models employed by (van
Sonsbeek et al., 2023): GPT-2XL (red), BioGPT
(green) and BioMedLM (blue) as question fea-
ture encoders and answer prediction modules. We
prompt them such that each is assigned a medical
role (e.g. resident or dermatologist) and learn to an-
swer the patient query from different perspectives.
For image feature encoders we can leverage CLIP,
although for dermatology we can also use more
localized feature embedders like Derm Foundation
(Steiner and Pilgrim, 2024; Rajeev V et al., 2024),
which has higher prospects of outputting features
for generalization across patients. The architecture
follows the general blueprint mentioned in (Sharma
et al., 2021). Accounting for resource-constrained
settings, many PEFT methods can be applied in ad-
dition to model compression, like quantization of
the language models, along with mixed-precision
training, where we decrease the bitwise precision
of the model parameters from an original 64-bits
to 16-bits.

After training multiple VQA models, during in-
ference, we follow the pipeline shown in Figure
3. Each VQA model receives a test query and of-
fers a list of answers, which may differ between
one another given they may have learnt differently
and focused on different aspects of the image em-
beddings during training. We provide this list of
answers and the original question to a LLM such
as Mistral-7b and ask for a concise answer given
the different diagnoses. For evaluation, multiple

metrics which account for answer quality, multi-
ple languages, among other aspects are employed.
These include BERTScore, deltaBLEU (a variant
of SacreBLEU) and MEDCON (Yim et al., 2024).

3 Discussion

Our training and inference regime is similar to
(García and Lithgow-Serrano, 2024), where the
difference lies in that we use multiple VQA model
responses, instead of responses from a single VQA
model, which are summarized by the LLM.

For the inference pipeline, we can also leverage
retrieval augmented generation (RAG) from derma-
tology ontologies to improve the medical accuracy
of answers.

For proprietary models which can’t be finetuned,
we can instantiate the inference pipeline by replac-
ing placeholders for language models with API
calls with LLMs like SoTA, multimodal LLMs like
Claude-3 or GPT-4o to explore the above roleplay-
ing, collaborative prompting strategy. The draw-
back of such approach is that querying multiple
proprietary models incur additional costs, as we
are unable to apply model compression techniques
if our goal is deployment over edge devices.

As the field of multimodal deep learning pro-
gresses, we also observe a trend of open-source
software, thus models like Molmo can be leveraged
and used in the proposed training and inference
framework above.
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Figure 2: Illustration of our customizable training pipeline. At a) we extract features from the question Q which
is constructed differently per each language model, and from the stack of images I. At b) we fuse the features to
be passed to the language model for free-form answer prediction. At c), each VQA model outputs an answer via
greedy search (or beam search with a width of 1), and is trained by minimizing the cross-entropy loss function
between ground-truth tokens and the predicted tokens. In the illustration we depict prompts in Spanish.

Figure 3: Illustration of our customizable inference pipeline. Similar to training’s stage a), we extract features from
the question and images, and fuse them at b) so that at c) each of the language models output a list of answers. At
d), the answers of each VQA model is put as context for a prompt to a LLM, where we query for a concise answer
that accounts for the different diagnoses offered by each model. In the illustration we depict prompts in Spanish.
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