
Charting the Landscape of Neuro-symbolic
Reasoners

An Xuelong
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Cognitive Science (Humanities)

School of Informatics
University of Edinburgh

2023

Abstract
Pure symbolic or logical approaches to learning are brittle as they are inflexible and do
not consider uncertainty. Pure deep learning approaches are equally brittle as they can-
not robustly generalize. Neuro-symbolic models try to overcome these two limitations
by combining the ability of deep learning approaches as feature engineers/extractors,
with the intelligible reasoning capabilities of classical symbolic models.

Interest over this family of models is growing, with a constant influx of novel models
and benchmarks to test their robust generalization and reasoning capabilities. How-
ever, much of the successes reported by a lot of neuro-symbolic methods over assessed
datasets are often too disparate to one another, and it is an ongoing research endeavor
to seek a common benchmark suite for which to comprehensively test the plethora of
neuro-symbolic models. The prerequisites of devising such benchmark involve under-
standing how neuro-symbolic methods and datasets relate to one another.

In this thesis, we survey the current panorama of neuro-symbolic model architectures
and benchmarks. As a result, we propose a general taxonomy for classifying current
and future neuro-symbolic models and reasoning benchmarks. From this, we propose
SaSSY-CLEVR, a highly heterogeneous common benchmark suite which can serve as
a common testing ground for different neuro-symbolic reasoners to compare and con-
trast their strenghts and limitations. We ran experiments on one aspect of our reasoning
benchmark, namely CLEVR-Hans3 to showcase how can we conduct comprehensive
and fair model comparison between neuro-symbolic and deep learning approaches.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy.
It did not involve any aspects that required approval from the Informatics Research
Ethics committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(An Xuelong)

ii

Acknowledgements
We are living in very interesting times where the introduction of large-language mod-
els have seemingly dominated the AI discourse and have framed the pursuit of artificial
intelligence as a matter of scaling-up transformer-based neural networks. Amidst this
frenzy of building ever larger networks, I’ve had the luck of meeting Antonio and
his lab, APRIL, who introduced me to the field of neuro-symbolic AI. I’m deeply
inspired by their braveness in navigating through the yet unexplored waters of neu-
rosymbolic AI which is surely riddled by challenges previously unseen in deep learn-
ing, but nonetheless worthy to pursuit if we want to build reliable, parsimonious and
transparent AI models. I also want to particularly thank my friends such as Lorenzo
Loconte from APRIL who helped me understand ProbLog syntax, Alessandro Pal-
marini, Andreas Grivas, Paolo Cassina and Shino Chen for the insightful discussions
on neurosymbolic AI and AI in general. I learnt a lot from simply speaking to you,
as well as working with you. Lastly, I can’t stress enough the importance of my fam-
ily’s support. Despite being far from home and not be able to be in physical contact
with them, their love serves as a backbone for me to look forward on my studies. For
a future where we can build reliable AI tools that can help us in our daily lives, the
current introductory work serves as the first step towards a long voyage of the pursuit
of artificial intelligence.

iii

Table of Contents

1 Introduction 1
1.1 A brief history of Artificial Intelligence 1
1.2 Neuro-Sybmolic AI . 2

2 Purely Symbolic and Deep Learning Models 7
2.0.1 Symbolism . 7
2.0.2 Deep learning . 8

3 Unifying Framework over Neuro-Symbolic Models and Benchmarks 12
3.0.1 Taxonomy of Neuro-Symbolic Models 12
3.0.2 Unified Framework for Benchmarks 17

4 Common Benchmark Suite Design 27
4.1 SaSSY CLEVR Benchmark . 27

4.1.1 Object-centric reasoning . 27
4.1.2 Knowledge-Graph reasoning 28
4.1.3 Task-driven reasoning . 28
4.1.4 Object-centric abstract reasoning 29
4.1.5 Counter-factual reasoning 30

4.2 Implications of Successful Completion of our Benchmark 32

5 Experiments 36
5.1 Methodology . 36

5.1.1 Models’ Setups . 37
5.2 Results and Discussion . 39
5.3 Limitations and Future Prospects . 41

6 Conclusions 43

Bibliography 44

A First appendix 50
A.1 Survey of NeSy Models and Taxonomical Categorization 50
A.2 Survey of Benchmarks and Associated Models 52

B Participants’ information sheet 56

iv

C Participants’ consent form 57

v

Chapter 1

Introduction

1.1 A brief history of Artificial Intelligence

Seventy years have elapsed since the Summer Research Project held at Dartmouth Col-
lege in which the systematic pursuit of artificially-designed intelligence was proposed,
inspired by the aspiration that ”every aspect of learning or any other feature of intelli-
gence can in principle ... be simulated by a machine” [Moor, 2006, McCarthy et al., 1955].
A cycle of winters and springs ensued, characterized by the transient rise and steep falls
of both symbolic and neurophysiologically-inspired models. Symbolic models failed
due to their brittleness exposed by innability to handle unstructured input given the in-
flexibility of their rules-based architecture and hard-coded, logic-based representation
of knowledge. Furthermore, despite an over-saturation of encoded knowledge, they
still lacked commonsense reasoning, and were unable to solve novel tasks. One such
canonical example is the ambitious expert system named CYC (short for encyclope-
dia) created by computer scientists Douglas Lenat and Edward Feigenbaum aimed at
encoding all necessary knowledge to a machine in order to instill commonsense under-
standing [Clark, 1997], which unsurprisingly was unable to achieve this goal. This was
later followed by a wave of interest centered around neural networks inspired by the
mimicking of the biological structure of the brain, with pioneering work carried out by
David E. Rumelhart and James L. McClelland [McClelland et al., 1986]. Focus shifted
instead on learning representations from raw, low-level, numerical data in order to sta-
tistically and accurately map unstructured input to desired output. Additionally, unlike
symbolic models which mainly performed serial computations and stored information
localized in data structures, neural networks aimed at emulating the brain’s ability
to do parallel computation and store information distributed across their connections
[Nilsson, 2009]. However, its attention faded due to the inability to scale up compu-
tation as well as lack of data to configure those models [Muthukrishnan et al., 2020].
At its initial stages, given the limited computing power available during the late 20th
century, neural networks were restricted to solving problems of limited-scale such as
handwritten, single, black-and-white digit recognition.

With the introduction of Graphical Processing Units (GPUs) and the abundance of data
brought by the Internet Revolution, the epoch past the 2010’s welcomed an unprece-

1

Chapter 1. Introduction 2

dented amount of attention targeted at probabilistic Deep Learning (DL), which greatly
eclipsed attention given to symbolic models (see an analysis from [Zhang et al., 2021]).
This is justified given the recurrent noteworthy performance in a plethora of bench-
marks meant to measure diverse faculties of human intelligence, such as the landmark
successes at the canonical benchmark of ImageNet meant to chart out how an AI model
can simulate Human Vision through classification (see AlexNet by [Krizhevsky et al., 2012],
a vision model widely regarded as a catalyst for such renewed attention), or translation
benchmarks to measure Human Language understanding. This generally prompted re-
searchers to shift from symbolic approaches towards statistical ones [Zhang et al., 2021].

The trend of successes that followed and reiterative redefinition of what constitutes the
”new state of the art (SoTA) performance” has given form to a hypothesis that deep
learning models can become more powerful (i.e. achieve more accurate predictions)
through scaling up of the underlying network and the curated dataset used for training
it. We refer to it as the ”Scaling Hypothesis”, a term borrowed from [Branwen, 2020].
That is, arguments backing this view hold that the improvement of prediction accuracy
of deep learning architectures are to be framed as issues of curating a large enough
dataset, enough processing power and larger architectures in terms of parameters. This
would, it is hoped, be enough to robustly solve challenging tasks meant to measure fac-
ulties of intelligence, such as cross-linguistic translation, visual question answering or
high-resolution text-to-image generation. Multiple empirical sources provide the con-
fidence for such claims. For instance, in an analysis done by [Kaplan et al., 2020] on
neural language models, they showed that language modeling performance improved
smoothly as the neural model’s size, dataset size, and amount of compute used for
training increased (see Figure 1.1). This view is further reinforced by the recent ad-
vances in the transformer-based deep neural network and its variations, which have the
capability to learn patterns of training-data across modalities (text-text, text-to-image,
image-text, image-to-image), thus overcoming a diverse array of multimodal bench-
marks, e.g., see FLAVA, a hybrid vision-language model which outperformed several
previously state-of-the art models on a series of multimodal tasks [Singh et al., 2022].
Furthermore, given an apparent flexibility in adapting it to solving new modalities of
tasks without having to fully-retrain the transformer architecture, [Lu et al., 2021] even
proposed them as universal computation engines. Generally, it is observed that claims
which support the scaling hypothesis revolve around successes on the aforementioned
benchmarks, achieved by bigger models.

1.2 Neuro-Sybmolic AI

However, careful observers of the scaling hypothesis have noted that purely deep learn-
ing systems are not as trendsetting as seemingly portrayed, mainly due to their brittle-
ness for robust generalization beyond the training set distribution, lack of explainability
tied to the lack of computational semantics, and lack of parsimony due to its evident
over-reliance to big data, and unacceptable levels of computational power consump-
tion [Garcez and Lamb, 2020, Harmelen and Teije, 2019]. The sources of such prob-
lems vary, and ongoing research seek to pinpoint, or even to understand them. Some
argue that it is due to the incapability of purely learning systems to disentangle con-

Chapter 1. Introduction 3

Empirical basis for the scaling-up hypothesis.

Figure 1.1: Researchers at OpenAI showed that the performance of a language
autoregressive model, measured as the cross-entropy loss averaged over a 1024-
tokens context, improved linearly given exponential increases in computing power,
dataset size and number of parameters in the model’s design. Figure extracted from
[Kaplan et al., 2020]

cepts such as shape, color or size from the training data and reason about them (see
[Higgins et al., 2018] for a more elaborate discussion on disentangled representation
of data). Instead, they learn distributed representations of the incoming raw data that
are indiscernible given that the weight parameters of the model do not carry any se-
mantic meaning nor reflect the real world in any meaningful way. For example, a deep
learning system may have to observe thousands of finely-procured images of a cat in
order to recognize it through pattern recognition that would not reliably generalize well
to a testing distribution of cat images. For instance, if the training set mainly consisted
of pictures of real-life cats, then it is uncertain whether this model can generalize to
out-of-distribution (OOD) samples such as cartoon cats, or cats appearing in highly
unusual backgrounds. Nonetheless, if they were able to disentangle the concepts of
shape and color that are representative of a cat, then, it is argued, not only would it rely
on less data, it could robustly generalize to unknown distributions by reasoning over
these concepts. Others point out that purely deep learning’s weaknesses are immedi-
ate consequences of the inherent biases present in some of the canonical benchmarks
they are trained on. Specifically, benchmarks for computer vision like ImageNet con-
tain implicit biases such as object-centrism, i.e. images often show the object to be
classified conveniently centered, without being rotated, under a well-illuminated back-
ground, and without confounding objects [Barbu et al., 2019]. This has led to models
trained and having excelling performance on ImageNet to experience accuracy drops
of around 40− 45% when tested on ObjectNet which control for such biases (Figure
1.2), irrespective of size. Another source of concern is due to the lack of transparency
of purely deep learning models both at a functional and structural level. That is, there
is no theoretical framework able to explain the underlying functional behaviour of DL
models. Thus, there are no mathematical proofs or explanations of why DL models
output right and wrong predictions. Although attempts have been made in making
a DL model’s internal architectures discernible through saliency maps over the input
space [Yu et al., 2014], authors such as [Stammer et al., 2021a] have pointed out that
such mappings are agnostic to the correctness of a prediction, and thus uninformative

Chapter 1. Introduction 4

Accuracy drops of large Convolutional Neural Networks (CNN) trained on
ImageNet when tested on ObjectNet

Figure 1.2: Researchers at MIT noted that SoTA CNNs trained on ImageNet across
the years experienced classification accuracy drops, as measured by top-1 and top-5
performance, when tested on ObjectNet which controls for object-centric bias. Figure
extracted from [Barbu et al., 2019]

of whether the model has grasped why a prediction is right from wrong. Structurally, it
is also unknown why changes in the neural architectures can achieve higher prediction
accuracy than predecessors in the same benchmarks. For instance, to address gradi-
ent vanishing and build deeper neural networks, [He et al., 2016] proposed residual
networks (ResNet). It has been empirically shown that adding their residual connec-
tions to a neural architecture can also smooth the associated loss function’s landscape
[Li et al., 2018], optimizing gradient descent convergence. However, the cause behind
such phenomenon remain unclear. Similar elusiveness is present when explaining the
capabilities of transformer-based neural architectures, as well as why do they have
to be assembled as described in [Vaswani et al., 2017]. Owed to this black-box ar-
chitecture, [Liu et al., 2021] proposed an alternative model, called gated multi-layer
perceptrons, which lacks a self-attention mechanism, and can achieve similar accuracy
in benchmarks originally addressed by transformers whilst trained on a less amount of
parameters. They interestingly point out that they neither know why gMLPs succeed
over transformer, nor why transformers are successful.

Given these shortfalls tied to the hypothesis of scaling up deep neural architectures, an

Chapter 1. Introduction 5

alternative approach which we refer to as the ”integration hypothesis”1 seeks to revisit
the school of symbolism to build hybrid models and formulate new benchmarks that
can address the aforementioned obstacles.

While symbolic models are well known to be brittle for their incapability to handle
uncertainty, they have strengths that can complement the shortfalls of neural networks.
Purely symbolic models such as expert-systems can be saturated with hard-coded rules,
and still be unable to capture all the forms an input can take or process unstructured
data. Nonetheless, they are credited for their transparency and explainability of output.
This is due to their explicit logic syntax, rules-based approach to processing data which
is theoretically understandable. They are also parsimonious because in contrast to neu-
ral networks which are data-hungry and model-size hungry, purely symbolic models
perform better through defining a low amount of putative rules because otherwise the
search space for solutions grows exponentially [Van Krieken et al., 2022], and com-
puting logical inference becomes intractable. They are also able to easily incorporate
human expert knowledge in their design and function [Saker et al., 2021] grounded on
the task to be solved.

Given the flexibility of purely deep learning models and intelligible reasoning pro-
cess of purely symbolic models, the integration hypothesis rests on the promising
potential that a hybrid Neuro-Symbolic (NeSy) model can complement the shortfalls
of each other, whilst expanding each other’s capabilities [Harmelen and Teije, 2019,
Garcez and Lamb, 2020] without compromising each others’ strengths (Figure 2.1).
Such integration can take many forms, such as equipping neural networks with the
ability to reason, or using neural networks for informed search over the hypothesis
space of a symbolic model as opposed to uninformative search strategies like depth-
first search. Argued advantages of such hybrid include 1) being robust to training from
small data sets which could be plagued by poor quality data by exploiting prior domain-
specific expert knowledge, 2) improve explainability through explicit knowledge rep-
resentation, 3) constrain and optimize learning in neural networks by incorporating
inductive biases tailored to the task, and/or 4) being able to process more diverse data
modalities and solve multimodal problems by addressing different input representa-
tions [Harmelen and Teije, 2019, Garcez and Lamb, 2020, Saker et al., 2021, Sun et al., 2022]
such as structured knowledge graphs and unstructured tensors.

There has been a myriad of models being proposed as a result of this interest in NeSy,
along with challenging benchmarks to empirically assess them (which we thoroughly
discuss in 3.0.2. However, the successes reported by a plethora of research teams
are often disparate with respect to one another as a consequence of substantially dif-
ferent model architectures proposed, and diverse benchmarks used to test them. As
[Garcez and Lamb, 2020] stated, ”NeSy AI is in need of standard benchmarks...[to]
provide a fair comparative evaluation of different approaches...”. It is therefore an
ongoing research endeavor to build a comprehensive view of the current landscape
of NeSy models and available benchmarks. This would be helpful in gauging the
capabilities of neuro-symbolic models relative to each other, as well as understand

1The choice of the term ”integration” is to reflect the idea that the merging of models of these di-
chotomous schools of thoughts result in a ”whole greater than the sum of its parts”. Hence, ”integration”
is best distinguished from a simple summation of deep learning and symbolism.

Chapter 1. Introduction 6

what different benchmarks are essentially assessing. In the present work, we provide
a thorough review of the integration hypothesis by surveying the growing literature on
neurosymbolic models and benchmarks to test them.

Over the course this thesis, we aim to chart out both the benchmarks currently avail-
able and the capabilities of these models by empirically evaluating them on a de-
vised common benchmark suite. In order to do this, in Chapter 2 we first provide
a systematic review of what are the strengths and weaknesses of both symbolic and
learning paradigms, motivating the combination of both in hybrid architectures. Af-
terwards, in Chapter 3 we propose a taxonomy for understanding how the myriad of
neuro-symbolic models relate to one another, along with a distillation of the various
datasets employed to test them. As a result of this understanding, in Chapter 4 we
devise a common benchmark suite able to comprehensively test the capabilities of a
neuro-symbolic model, and is also useful for making inter-model comparisons. Given
the heterogeneity of our benchmark, in Chapter 5 we focus on running experiments
with neuro-symbolic model variants on one aspect our benchmark, outlining guide-
lines on running fair model comparison and comparing the capabilities of different
architectures. We follow this with a discussion of the results obtained, analyzing their
current strengths and weaknesses, and how they inspire further research in the neuro-
symbolic literature. In Chapter 6 we conclude with a synthesis of our findings, and
future prospects of NeSy AI.

Our main contributions can be summarized as three-fold:

1. We provide to the research community an overarching taxonomy in order to
classify current and future NeSy models proposed in the literature, allowing us
to firsthand gauge the strenghts and limitations of models falling within each
category.

2. We propose a common reasoning benchmark suite accounting for the diverse
challenges proposed for NeSy architectures so far, and thus useful for running
comprehensive experiments amongst NeSy methods.

3. By running experiments on publicly available NeSy models on one aspect of
our benchmark suite, we explore on how to conduct fair model comparison be-
tween NeSy methods, how to highlight their strengths over purely deep learning
baselines and discuss the strengths and weaknesses among NeSy candidates.

Chapter 2

Purely Symbolic and Deep Learning
Models

In order to thoroughly understand the motivation behind the marriage of the school of
symbolism and connectionism, we provide a brief, functional description of models
from both schools.

2.0.1 Symbolism

One of the earliest speculations of the 1956 Dartmouth Summer Project is that ”a large
part of human thought consists of manipulating words according to rules of reasoning
and rules of conjecture”, an idea that shaped AI for decades [Moor, 2006]. The basis of
the symbolic school of thought is logic, a system which represents knowledge through
the use of symbols, and the manipulation of such symbols is a process referred to as
”inference”.1 Propositional logic is the most basic form by which statements about
reality can be represented. Given a proposition P, it can be evaluated to either True or
False. Propositions can be connected through logical connectives→,¬,∧ and∨, which
correspond to either if-then, negation of, and and or to form a compound proposition
describing reality. Because propositions take zero arguments, they are of arity zero.

Relational logic builds on top of this formal system by allowing propositions to take
in arguments, then acquiring the name of atoms or predicates, allowing the repre-
sentation of relations if the predicate is binary, or properties if it is unary. These
atomic formulas or predicates can either take a variable or term (written in uppercase)
smoker(X) and/or it can be grounded to a constant, making the predicate be known as
an entity/fact/ground-atom, e.g., smoker(shirley) (written in lowercase). Both denote
X is a smoker and Shirley is a smoker respectively. A clause/rule is a disjunction of lit-
erals and is often written as h← b1∧ b2∧ . . .bk, where h is the head of the rule, and it
implies the literals bi which constitute the body. This can be rewritten as a Horn clause
as h∨¬b1∨¬bk . . ., or when written in a programming language it is h :- b1,b2 . . . ,bk

1In this thesis, we do not engage in a terminology dispute of what a symbol is. At a pragmatic
level, symbols refer to the usage of logical predicates, while subsymbols refer to the usage of tensors of
numbers when solving a task

7

Chapter 2. Purely Symbolic and Deep Learning Models 8

[Šourek et al., 2015, Manhaeve et al., 2021]. A logic program is a set of atoms and
rules describing how atoms relate to one another. First order logic (FOL) builds on
top of relational logic by allowing the use of universal or existential quantifiers ∀,∃.
However, in practice, such as in logic programming, variables appearing in rules are
assumed to be universally quantified [Manhaeve et al., 2021], and thus relational logic
and FOL often refer to the same logic system.

Fuzzy logic relaxes the logical semantics so that predicates can be evaluated to a con-
tinuous spectrum in [0, 1], thus becoming differentiable. This is at the cost that logical
equivalences don’t hold as originally did and logical predicates lose their semantic
meaning [Van Krieken et al., 2022]. Probabilistic logic allows ground-atoms to have
probability distributions attached to them. They’re often written as a annotated dis-
junction 0.8 :: h :- b1,b2 . . .bk, which in contrast to fuzzy logic retain their original
semantic meaning. The trade-off, however, is that NeSy architectures which incor-
porate probabilistic logic programs are difficult to scale-up as the symbolic compo-
nent inherits the necessity to search over an exponentially growing hypothesis space
specified by the program, a #P-hard problem known as Weighted Model Counting
[Chavira and Darwiche, 2008], with ongoing work seeking to improve the tractability
of probabilistic logical inference [Van Krieken et al., 2022].

For a purely symbolic program to solve a task, we must first prescribe a domain-
specific language (DSL) which will be used to write a logic program which serves
as an abstraction to the problem at hand. For example, consider the symbolic model
in Figure 2.1a. It specifies a logic program P through FOL to represent a small world
denoting a group of friends and how are the dynamics of friendship, smoking and
emphysema. It can be given a query q of inferring whether it is true that Kerry has em-
physema. The symbolic model would first check whether the query q is an explicitly
stated fact in the program. If not, it tries to prove the truth of the query by grounding
the variables to the constants, a process called unification. To further find applicable
rules, the model attempts to unify q with the heads of all available rules. If unification
succeeds, variable substitutions occur in the atoms as stated in the body of the rule.
Those atoms becomes a subgoal, and each subgoal is recursively proven using this
same process [Weber et al., 2019].

From this brief description of the pipeline of a symbolic model, we can note the chal-
lenges tied to running symbolic models. As the amount of rules increase, the search
space in order to prove a query grows exponentially, therefore symbolic models have
been weak at scaling up. Subsequently, it is also a very intricate endeavor the pro-
cess of designing and incorporating the necessary domain-specific knowledge tailored
at the task to be solved. This makes them inflexible to transfer among substantially
different tasks. The upside to these issues is that the logic program is transparent, and
compelled to be parsimonious to be tractable.

2.0.2 Deep learning

Deep learning is a paradigm shift from the symbolic school of thought. The learning
school of thought employs vectors (also referred to as sub-symbols in the literature)
to represent knowledge, such as one-hot vectors for words in language tasks, pixel

Chapter 2. Purely Symbolic and Deep Learning Models 9

matrices in computer vision tasks for brightness and weight matrices embedded in
the neural architecture to refer to latent, distributed knowledge representations. A
deep neural network (DNN) is a biologically inspired model made of directed, acyclic
stacked layers of perceptrons where the weights across layers are tune-able parameters
according to incoming batches of training data [Goodfellow et al., 2016].

Specifically, given a dataset D = {X,y}, where X consists of input features and y is the
desired output, a DNN is a function f : Rm→ Rn that maps vectors from input space
to target space [Šourek et al., 2015]. In an autoencoding task, the target space is the
original input, and the function is a ”bottleneck” to learn how to reconstruct the input.
This function is composed via series of layers l, each parametrized by a weight matrix
W l . Each prior layer is related to the next one via a differentiable activation function τ,
such as a rectified linear unit (ReLU) for intermediate layers and a final activation for
the output layer σ. Put together, this results in:

ŷ = σ(W l
τ

l(W l−1 . . .W 2
τ

1(XW 1)))

, where ŷ ∈ Rn is the predicted output, τ could be the ReLU activation function, and σ

could be the softmax function if the task is multi-class classification. Each W l ∈W .
Prior knowledge, commonly called inductive biases, shapes the design of the function.
If the input data consists of image and the function must account for translational,
scaling or rotational invariance, then f is a convolutional neural networks (CNN).
If the data is sequential and has long term dependencies, f can be either a recur-
rent neural network (RNN) or transformer-based neural network. If the data must
learn about relationship between entities, f can be a graph neural network (GNN)
[Goodfellow et al., 2016].

Depending on the assumptions about the training data distribution and the nature of the
task to be solved, e.g., classification or prediction, an error function L : {ŷ,y} → R is
defined, such as the binary cross-entropy loss for binary classification. From there,
the disparity between predicted output and ground-truth is used as a signal that is
backpropagated from the last layer to earlier ones in order to adapt weights through
stochastic gradient descent to minimize the prediction error of the network. The op-
timal set of weights is W ∗ = argminW ∗L(ŷ,y) computed from the training data. A
validation set is used to find optimal hyperparameters, such as number of layers, per-
ceptrons per layer, batch size of training data, epoch, with particular focus on learning
rate α that controls convergence of gradient descent or other architectural concerns like
dropout rate that controls overfitting. The overall neural network learns to approximate
the probability distribution of the training data after observing it for multiple batches
across several epochs [Šourek et al., 2015], as depicted in Algorithm 1.

The performance of the DNN is evaluated on a never-seen test set. The current litera-
ture in deep learning is interested in generalization, the ability to perform well on the
test set without memorizing the training data distribution. Challenges arise when the
testing distribution does not reflect the training distribution, a phenomenon known as
generalization to out-of distribution data.

A probabilistic treatment can be given to the above deep architecture by assuming
weights Wi ∼ p(Wi), input features Xi ∼ p(Xi) and labels y∼ p(Y) are random vari-

Chapter 2. Purely Symbolic and Deep Learning Models 10

Algorithm 1 Stochastic gradient descent for training neural networks and choosing
optimal hyperparameter

Input: Training dataset Dtrain = {Xtrain,ytrain}, Validation dataset Dval =
{Xval,yval}
hyperparameters: number of layers, epoch, minibatch size, α, among others.
Output: optimal W ∗

Initialize W
for hyperparam α in grid do

for epoch do
for minibatch in Dtrain do

forward pass: ŷ = f (Xminibatch;W)
stochastic gradient descent: W ←W −α∇W L(ŷ,y)

end for
end for
validation forward pass: ŷ = f (Xvalidation;W)
compute validation loss: L(ŷ,yval)

end for
Output optimal W ∗ with lowest validation loss

ables with underlying distributions describing them. The goal becomes estimating the
data generating process p(D). With a simple function f like linear regression, which
can be thought of as a DNN with one layer, the distribution of the weights W is esti-
mated via Bayes Theorem:

p(W |D) =
p(D|W)p(W)

p(D)

, where p(D|W) is the likelihood of observing data given the current parameters,
p(W) is the prior over parameters that encode domain expertise on the plausible range
of values of the parameters before seeing any data, and p(D) is the model evidence or
normalization constant, which is the expectation of the likelihood under the prior, and
serves to ensure the posterior is a valid probability distribution.

As an example of deep learning, consider now Figure 2.1b, where we can try to solve
the same problem of querying whether Kerry has emphysema by employing a neural
network. Its usage opens the opportunity to represent the entity as Kerry through a
tensor of numeric features. This input space allows for a representation that can ac-
count for uncertainty, e.g., feature x1 can be the frequency of cough which could be
recorded from a wearable sensor by Kerry, where the sensor can capture noise from
the environment. Given enough training data (samples of patients with emphysema
or controls), and framing this problem as a binary classification task, the model could
learn to discriminate with high accuracy patients with emphysema from those who do
not in the training set. However, the output results are often untrustworthy given that
the underlying process mapping the input to the output is commonly regarded as a
black-box. Furthermore, there is no theoretical guarantee that there would be a small
generalization gap if the model is to predict over a test set which data distribution may
not reflect the training data distribution. For example, an implicit bias in the training

Chapter 2. Purely Symbolic and Deep Learning Models 11

Complementareity of symbolic models and neural networks exemplified through
a task of prediction of having emphysema

Figure 2.1: Strengths and weaknesses of both models. Notice that in a), the logic
program is transparent but written exclusively for the task of querying whether the atom
”Kerry has emphysema” holds. In b), the neural network is able to learn a desired input-
output mapping, where input is represented more thoroughly by measuring a wider
spectrum of features to characterize an individual. It is scalable and can capture com-
plex patterns in the input distribution, but this is at the cost of being a black-box and lack
of parsimony.

distribution could be, by chance, due to most training samples being measured from
young adolescents who had access to wearable sensors, while the testing distribution
also accounted for older adults with low-quality sensors.

Given this brief example, we note that due to this paradigm shift in modeling with
respect to symbolic models, challenges tied to fitting neural networks are different to
those of their counterparts. For example, given that neural networks embed knowl-
edge in their parameters in a distributed manner, they become difficult to interpret
and discern, even though they are easily scalable. It is outside the control of the re-
searcher to control what the DNN is learning, and there is no mathematical guarantee
to ensure the model is not picking-up spurious correlations in the data or statistical arti-
facts. Furthermore, tangent to their black-box architectures includes their unreliability
in generalizing to out-of-distribution data, which gets exacerbated as it is also difficult
to diagnose the source of an invalid output. For example, in the above scenario, the
DNN could classify a newborn baby (of age 0) who never coughed or presented any
symptom, as having emphysema. Such prediction would be paired with no insight into
why.

There are attempts at mitigating such black-box behavior by back-tracing the sequence
of activations that correlate with certain input-output pairs, or performing dimension-
ality reduction techniques on the weights W to find semantically meaningful repre-
sentations [Barredo Arrieta et al., 2020]. While we acknowledge their importance, the
focus of our work explores NeSy AI as alternative to address the black-box nature of
deep learning and expand its capabilities, where current explainability methods can
work in tandem with NeSy AI.

Chapter 3

Unifying Framework over
Neuro-Symbolic Models and

Benchmarks

3.0.1 Taxonomy of Neuro-Symbolic Models

The idea of integrating symbolic models with neural networks isn’t novel. Views
date as far as prior to the 21st century, such as how [Minsky, 1990] argued that use-
ful AI systems should be ”built by combining diverse components, some connec-
tionists, and others symbolic”. In recent years, attention revolving hybrid architec-
tures rapidly gained traction as a response to the discussed brittleness of deep neu-
ral networks. This is evidenced by how the topic of NeSy AI has been discussed
in major world conferences and by influential researchers [Harmelen and Teije, 2019,
Garcez and Lamb, 2020]. A myriad of architectures has been proposed, with examples
including neural-driven derivation of rules [Marra and Kuželka, 2020, Marra et al., 2020],
neural driven knowledge graph search as opposed to uninformative searches through
breadth-first or depth first search and setting constraints through expert rules in order
to guarantee the soundness of outputs of multi-label classification and prediction mod-
els [Xu et al., 2018a, Ahmed et al., 2022a]. There is also work on integrating proba-
bilistic logic programming to provide a structured representation for deep generative
modelling [Misino et al., 2022]. Generally, on one hand, such constraints can address
the theoretical concerns of whether a model can produce sound outputs given training
data. On the other hand, the clear semantics of a NeSy model addresses concerns of
transparency and trust, which contrasts with black-box deep learning models.

Henry Kautz, at the Third AAAI Conference, was one of first researchers who pro-
posed a highly abstract, quinary classification system to categorize different NeSy
architectures proposed [Saker et al., 2021]. Within it, a sequential architecture is of
the form symbolic Neuro symbolic, mainly referring to models which pre-process
non-numerical input into a matrix embedding to a neural network, outputting a non-
numerical result. A nested architecture refers to either a Symbolic[Neuro] or Neuro[Symbolic]
model where the parenthesis is used to denote the dominant component in the model.
For example, Symbolic[Neuro] would be used to classify models where there is a dom-

12

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 13

inant reasoning system where the neural component simply guides internal decisions,
such as AlphaGo. A cooperative architecture of the form Neuro→Symbolic consists
of a neural network which outputs an intermediate result that is passed to a symbolic
reasoner which solves a complementary task. For example, in visual question answer-
ing, the neural component would be in charge of object detection and the symbolic
component would reason over this state space. A compiled system of the form Neuro
: (symbolic), which refers to an approach where symbolic rules are ”compiled” away
during training of the neural network. Here, knowledge could be compiled into either
the network’s weights or into the loss function. As a canonical example of this class,
they cite the work of [Lample and Charton, 2019] where they build a model able to rec-
ognize the compositional structure of mathematical expressions to solve differentiation
[Hamilton et al., 2022].

[De Raedt et al., 2020] propose a more intricate system by categorizing models based
on seven dimensions, mainly focusing on the structural aspects of assembling NeSy
models. First, a NeSy model could be distinguished as either being represented as a di-
rected graphical model (allowing for causal interpretation as in Bayesian Networks), or
an undirected one as a Markov Network. Second, they examine what are the dominant
components of the model, whether it’s a probabilistic model, neural network or a rules-
based model. Thirdly, the semantics of the logic integrated into NeSy models can be
identified into either propositional, relational, first-order or logic programming. Func-
tionally, they identify whether the inference engine of the NeSy model could either be
model-theoretic or proof-theoretic. This refers to the difference between models which
use forward chaining for forming new clauses given rules until some terminal condi-
tion is reached and those which employ backward chaining to find the set of applicable
rules that can be used to prove a clause. They also propose identifying whether the
model is mainly learning the weight parameters of the neural network, or learning the
logical clauses of the symbolic program. Finally, a NeSy model could be divided into
those which use logical clauses to represent input, those which use vectors or both.
While this taxonomy provided by [De Raedt et al., 2020] is more thorough compared
to Kautz’s, it is more controversial as it may result in more contentious decisions, given
that it is more challenging to determine whether a NeSy model should be assigned to a
particular class, and whether the division among classes is sound. For example, there is
a lot of overlap when it comes to determining the semantics of a NeSy model as know-
ing it uses first-order logic enables us to know that it represent entities using clauses
(logical predicates), which is symbols in dimension 6. Additionally, when being im-
plemented in code, first order logic is a form of relational logic as all variables are
assumed to be universally quantified. Furthermore, all NeSy models employ a neural
network and engages in parameter learning, making this dimension redundant.

We try to combine the generic quality of Kautz’s framework with the granular char-
acteristics outlined by [De Raedt et al., 2020]. In doing so, we aim in building a clas-
sification system of neuro-symbolic architectures which strikes the balance between
abstraction and specificity. Drawing inspiration from Zoubing Gahramani’s cube for
categorizing probabilistic models, we propose the following general framework to un-
derstand how neuro-symbolic models have been assembled. Our framework not only
tries to embody a wide spectrum of models, but also allows the reader to judge first

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 14

Prior work on building a taxonomy of NeSy models

Figure 3.1: Highly granular classification system which can account for a plethora of
NeSy models. Whilst highly informative, it is equally contentious given disparities in
how authors can interpret what each dimension refer to. For example, dimension 3
and 5 are highly correlated and redundant with respect to one another as NeSy models
with a neural network are bound to have tuneable parameters. Table extracted from
[De Raedt et al., 2020]

hand the capabilities of some NeSy architectures.

Our framework has a tri-dimensional coordinate system which describes how displace-
ment along an axis changes a significant component of the represented NeSy model.
In the leftmost section of the X-axis are models which perform heavy reasoning over
clauses, such as probabilistic inference, and light learning, such as parameter estima-
tion [Yu et al., 2022]. The dominant component is encircled with ’{}’, e.g., for NeSy
architectures with a dominant reasoning component, they are written as Ne{Sy}. As
we move rightward along this axis, we encounter NeSy models which consist of a
primary neural component and mainly engages in parameter learning, i.e., {Ne}Sy.

We leave ”Sy” as a placeholder, which along the Z axis will take on values to repre-
sent the type of logic employed by the model. As we descend, the expressiveness of
the logic increases, so we either substitute with propositional, fuzzy, first order or a
higher order logic. Lastly, the Y-axis denotes whether the neural and symbolic com-
ponents are connected via a nested architecture, compiled system or another way. We
do not consider Henry Kautz’s categories of ”sequential” or ”cooperative” since we
argue there is a lot of overlap with the other two. Namely, at a functional level, both
compiled and nested architectures can be thought of as cooperative or sequential since
both the symbolic and neural components exchange outputs during training and test-
ing. As the literature on NeSy develops, there will be new ways of merging both neural
and symbolic systems. Our framework would thus be capable to anticipate architec-
tural variants that mix certain types of logic or prioritizes learning over reasoning or
viceversa.

We proceed in describing the capabilities and examples belonging to each vertex. NeSy

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 15

Unified Framework for Neuro-Symbolic Models

Figure 3.2: Non-exhaustive Schematic taxonomy of neuro-symbolic models

models can shift around these vertices depending on the particular task to be solved,
such as whether it involves low-level perception and thus require a deep neural net-
work like CNNs, or whether it is querying over a knowledge graph and a factor graph
representation using Logic Markov Networks is enough.

• {[Ne]}Sy: It is used to refer to models which mainly perform function approxi-
mation and the logical module is mainly reserved to manipulate the probabilities
of the network to solve a task. For example, in [Yi et al., 2018], the neural com-
ponent is a CNN which learns to output a representation of the input image,
which resembles a SQL-table where rows are the objects appearing in the scene
and columns are the attributes describing each object. The symbolic compo-
nent is a SQL-query executor that queries this representation. It is worth noting
that in such architectures, the logical component itself is not differentiable, but
the NeSy architecture as a whole is end-end differentiable. Henry Kautz would
also argue that deep reinforcement learning models would also fall within this
category, exemplifying AlphaGo, which is composed of a deep neural network
and a non-differentiable Monte-Carlo search tree. The outputs of the neural
component are used to passed to the search tree to obtain an output. Whilst
the symbolic component of a NeSy model has been in the past also associated
with Good-Old-Fashioned-AI (GOFAI) techniques like tree search, transversal
algorithms or game theory, in our work we restrict ourselves to associating the
symbolic component to the manipulation of logical predicates.

• Ne{[Sy]}: Here, we refer to NeSy architectures which have a dominant reason-
ing component consisting of a probabilistic logic program. Given a prescribed
logic program consisting of probabilistic clauses, the probability distribution
of each of them are estimated by neural networks. Examples include Deep-
ProbLog [Manhaeve et al., 2021] or Scallop [Li et al., 2023]. Usually, in this
kind of nested architecture the symbolic program’s logical predicates are non-
differentiable and retain their semantics, which is helpful for transparency. The

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 16

trade-off, however, is that they also inherit the difficulty of scaling up as per-
taining to classical symbolic logic programs. As mentioned previously, there
is ongoing effort to overcome this bottleneck through approximate inference
[Van Krieken et al., 2022]. Other examples of this nested architecture involve
Neural Markov Logic Networks [Marra and Kuželka, 2021], where standard feed-
forward networks are employed to estimate the probability distributions of a fac-
tor graph. The parameter estimation of such networks are constrained by FOL
prior knowledge. They also inherently suffer from the symbol grounding prob-
lem, i.e., on figuring out which symbols in the logical program corresponds to
what desired concept. Such issue is not commonly discussed given that most
benchmarks in which nested architectures are tested upon only rely on images
composed of one object, such as an image containing only one digit such as in
MNIST addition.

• {Ne}: + Sy: We include models which mainly perform learning by incorporat-
ing inductive biases, i.e., knowledge of the engineer embedded which influence
how they process input and adjust parameters. These inductive biases do not
follow the syntax of logical predicates, but are nonetheless implicit to the model
architecture, and hence we denote them as compiled. The symbolic component
is also differentiable but play a minor role such as specifying soft or hard con-
straints regarding plausible range of output values. Examples include Seman-
tic Loss Functions used for multi-label classification and Semantic Probabilistic
Layers used for predicting the shortest path over a input map. We note that be-
cause these models lack a substantial symbolic component, they are unable to
process symbolic input like logic programs.

• Ne : {Sy}: We incorporate here models which reason over a logic program,
but instead uses differentiable logical predicates, such as by adopting fuzzy
logic. We include models like Logic Tensor Networks [Donadello et al., 2017]
and Lifted Relational Networks [Šourek et al., 2015], the latter which uses ”real
logic” to refer to differentiable FOL, that is, Fuzzy FOL. Depending on the
model architecture and chosen abstraction of the problem, compiling logic can
also help shape informative search over graphs structures as opposed to uninfor-
mative search methods which are non-tractable as the graph scales up. This also
helps scaling the model during inference at the expense of losing the semantics
of logic predicates.

While our framework can be interpreted as a discretized space where at each ver-
tex particular kinds of models reside, our framework is better understood as allowing
models to be positioned in a continuum along the edge. For instance, models like
DeepProbLog can reside between {[Ne]}Sy and Ne{[Sy]}. This is because the user can
define only a probabilistic logic program for it to perform approximate inference, such
as solving program induction for sorting arrays. But, DeepProbLog also engages in pa-
rameter estimation such in its MNIST Addition Task where it learns which digits sum
to certain output number without needing the corresponding digits to be labeled during
training [Manhaeve et al., 2021]. Furthermore, we point out that our framework could
also be used to compose unknown architectures by extrapolating the corresponding
axes.

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 17

3.0.2 Unified Framework for Benchmarks

Tangent to the plethora of models proposed is the panorama of benchmarks used to
test each of those models. We surveyed the vast literature and as expected, it is com-
mon that successes reported by different research teams for the models proposed are
disparate to one another due to either unrelated benchmarks [Hamilton et al., 2022],
as well as intrinsic differences in the tasks completed by each model proposed. We
provide a more detailed survey in the Appendix A.

A very common benchmark we have surveyed and publicly available is CLEVR by
[Johnson et al., 2017] (Figure 3.3), which is a visual question and answering (VQA)
task which diagnoses whether a model can reason over a set of objects (see Table A.2).
CLEVR is designed to be challenging by controlling for certain aspects of object-
centrism by introducing several confounding objects in an image, each of varying rota-
tion, position, background illumination, color, shape, material and size. Given a input
scene which consists of maximum 10 objects with varying attributes, a model is asked
questions such as ”how many red spheres are there?” and ”what is the shape of the
object next to the blue cube?”. Such questions fall within 4 categories:

• Query attribute, which asks for an object’s attribute, such as ’what color is the
sphere?’

• Counting, such as asking ’how many red cubes are there?’

• Existence, exemplified by asking ”are there any cubes to the right of the red
sphere?”

• Compare integer, which asks questions like ”are there fewer cubes than red
things?”.

[Mao et al., 2019] report a neuro-symbolic concept learner, NeHOL1 where they re-
port state-of-the-art prediction accuracy despite holding out 90% of the training data, a
form of out-of-distribution generalization from small data. There are several variations
of CLEVR, such as CLEVR-Hans3 proposed by [Stammer et al., 2021a] and tested
by their proposed NeSy model, as well as αInductive Logic Programming (ILP) by
[Shindo et al., 2023], a neurosymbolic forward reasoner. Another variant is CLEVRER
by [Yi et al., 2020] where instead of images, videos of colliding objects are shown.
Similar to before, a model is challenged to answer different types of queries over
these events, with the addition that counterfactual queries can be asked about colli-
sions which are not shown in the sequence of frames.

Other NeSy models have been tested on reasoning over knowledge graphs, completing
tasks such as multi-hop reasoning (see Figure 3.5) for knowledge base completion by
employing datasets like MedHop, WikiHop and babi [Weber et al., 2019, Marra and Kuželka, 2021].
In such cases, we note how evaluation metrics slightly differ to metrics such as predic-
tion/classification accuracy as we also include satisfiability, and completion time. The
former refers to whether the model’s arrived fact doesn’t contradict existing knowledge

1Their NeSy model synthesizes programs applied over an embedding of the input to answer a
query on the image. Here we describe programs as a form of HOL, where we point the reader to
[Van Emden and Kowalski, 1976] for a discussion on this

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 18

Illustration of the CLEVR dataset

Figure 3.3: The CLEVR dataset is a VQA dataset which given an image and a query, a
model is challenged to reason over the image in order to answer the query. This dataset
serves as an alternative to ImageNet as images from it control for object-centric bias.
CLEVR is thoroughly annotated, and each image is paired with a knowledge graph
detailing in a semi-structured format what are the qualities, where does each object
appear, and what is the query-answer for it. A functional program on how to compute
the query is also supplied.

Illustration of the CLEVERER dataset

Figure 3.4: CLEVRER is a variant of CLEVR where frames of images are fed to the
model in order to answer a wider variety of queries, including counterfactual queries
over collision events which have not happened. Figure extracted from [Yi et al., 2020].

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 19

Example of a training datapoint in a Knowledge Graph for multi-hop reasoning

Figure 3.5: During training, a model parses a knowledge graph which consists of a
natural language prompt, a structured question and a given answer. In this example,
the model is supplied knowledge that the Hanging Gardens are located in Mumbai,
while Mumbai is located in India. We can therefore ask whether the Hanging Gardens
are located in India because although this wasn’t explicitly mentioned in the provided
information, it can be reasoned over.

Small world reasoning task

Figure 3.6: Given a structured small world description which consists of logical predi-
cates, a model is tasked with finding a sequence of steps that map intial state to target
state.

contained in the knowledge graph, while the latter is a measure of the time complexity
of the inference procedure.

Different research teams also propose models where they test task-completion over
a prescribed logic program, and empirically evaluate their models over defined prob-
lems such as the Block’s World Problem [Dong et al., 2019] (Figure 3.6), sorting arrays
[Manhaeve et al., 2021] or determining the evenness of a digit [Evans and Grefenstette, 2018].
Performance metrics in this case are similar to those of knowledge graph reasoning:
satisfiability and completion time. What is interesting from models completing these
types of tasks is that the prescribed logic program to define a problem can be expressive
enough to encompass problems like linear, logistic regression as well as unsupervised
clustering, as shown by [Donadello et al., 2017].

Another novel benchmark is Procedurally Generated Matrices (PGMs) [Barrett et al., 2018],
which is an abstract reasoning task where a model is tasked choosing an image, from
multiple choices of candidates, that completes an implicit pattern present in a preced-
ing sequence of panels (Figure 3.7). Here, the term ’abstract’ refers to the absence
of a query and lack of an explicit mention of the rule the sequence of generated im-
ages is following. Variants inspired by PGMs include RAVEN’s progressive matrices.

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 20

The RAVEN dataset [Zhang et al., 2019] is a multiple choice, abstract-pattern com-
pletion problem with a similar setting as PGMs. Each training instance consists of
panels, each panel’s image has attributes has objects described in terms of type (trian-
gle, square, pentagon, hexagon and circle), size (enumerated from 1 to 6), and color
(enumerated from 1 to 10). Objects follow 4 types of rules:

• Constant: The attribute value does not change per row.

• Progression: The attribute value monotonically increases or decreases in a row
by a value of 1 or 2.

• Arithmetic: The attribute values of the first two panels are either added or sub-
tracted, yielding the attribute value of the third panel in the row.

• Distribute three: This rule involves the fact that three different values of an
attribute appear in the three panels of every row (with distinct permutations of
the values in different rows)

[Hersche et al., 2023] propose a neurosymbolic architecture that vectorize rules of logic
and embeds them into a neural architecture to achieve new state-of-the art completion
accuracy compared to purely deep learning alternatives. Their work, however, assumes
the model knows a priori what are the implicit sequences followed by these PGMs.

[Chollet, 2018] propose the Abstract Reasoning Corpus that tests for analogy-making,
a form of identifying implicit patterns in provided panel of images. The difference with
PGMs lie in that a pattern is not chosen from a pool of candidates, but rather has to
be generated by the model. Most importantly, there is no a priori specification of what
rules or composition of them underlies the analogy. At the time of writing this thesis,
we haven’t identified an existing NeSy model achieving remarkable results in solving
the ARC challenge, although there are attempts. For example, [Banburski et al., 2020]
leverages Dreamcoder[Ellis et al., 2021], the program synthesis model, to only solve
a portion of ARC tasks, such as those with a common theme of symmetric patterns.
Despite challenging for the current landscape of deep learning and NeSy models, it has
been studied that humans can easily achieve a pattern-completion accuracy exceeding
80%[Moskvichev et al., 2023]. Furthermore, the same authors propose a variant of
ARC called ConceptARC to help the machine learning community diagnose a solution
to the original challenge and assess the limitations of purely deep learning systems like
GPT-4, which is reported to be unable to solve it.

Above is a brief description of some of the benchmarks that have been used to test
different neurosymbolic reasoners, with a more detailed overview in A.2. It is evi-
dent that successes reported by different research teams can not be placed on a wider
context due to essentially different challenges being solved, and different evaluation
metrics pertaining to a specific dataset used to assess a NeSy model (see Figure 3.9).
Rarely there is an overlap of different NeSy models being tested on a same bench-
mark, and as such it is difficult to chart out the capabilities of NeSy models as well as
means to optimize them. Comparisons amongst models is challenging, which in turn
prompted authors like [Garcez and Lamb, 2020] to conclude that ”NeSy is in need of
standard benchmarks and associated comprehensibility tests which could provide a fair
comparative evaluation of different approaches”.

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 21

Sample image of a procedurally generated matrix

Figure 3.7: Given a panel of images, a model is tasked to complete the sequence. In
the example shown, the number of starts increase by one across each column. The
position of the starts are irrelevant when deciding what is next in the sequence. Figure
cropped from [Barrett et al., 2018]

Our survey suggests that in order to design a common benchmark, we have to account
for the different challenges and evaluation metrics that are used in the above datasets.
This can be done in a straightforward way by assembling essentially distinct datasets
into a benchmark suite. The benefits of devising this standard benchmark is that it
allows current and future researchers to be able to systematically compare different
methods under this common benchmark on whether they can achieve goals such as
out-of-distribution generalization from small training data, interpretability of reasoning
process [Hamilton et al., 2022], and computational time and memory complexities. In
order to devise the common benchmark suite, we first designed an abstract framework
useful for understanding what most, if not all, datasets are testing (Figure 3.10).

This abstraction aids us during our survey of the vast literature of datasets as we cata-
logue proposed datasets in terms of input/output requirements and sizes, computational
challenges, and reasoning task (see Table A.2). As a result, we identify and propose
the following quinary classification system to describe known reasoning tasks useful
to test neurosymbolic models:

• Object-centric Relational Reasoning (often referred to as visual question and
answering). According to Figure 3.10, or the blue arrow in Figure A.1, this
would correspond to a curated dataset consisting of low-level input, logical pred-
icates and/or natural language question having to be mapped to a fact or a nat-
ural language answer. In this reasoning task, a model is tasked to perform rela-
tional reasoning over unstructured data consisting of images. Challenges arise
given the appearance of multiple confounding concepts in the image, such as

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 22

Sample image of a traning instance of the ARC challenge

Figure 3.8: A guided-user interface depicting a training instance that consists of maybe
3-5 pairs of panels. Preceding pairs of panels are task demonstrations where the tran-
sition from left to right follows an implicit pattern, i.e., an ”analogy”. A model is tasked to
complete the pattern for the last pair. In the example shown, the right image is reflected
to the left. Image extracted from [Chollet, 2018]

Disparity of successes in the NeSy literature

Figure 3.9: Depiction of disparate successes of NeSy architectures. Notice the rare
overlap among models and datasets, making comprehensive comparisons challenging.

in CLEVR and its variations, thus assessing the model’s ability of learning a
disentangled representation of such signal.

• Multi-hop Reasoning over a knowledge base or graph, also known as knowledge-
base completion or query answering (QA) over incomplete knowledge graphs
(KGs). We adopt the definition of KG as a semi-structured dataset consisting of
a collection of entities and relationships among them. In Figure 3.10, or black-
fill arrow in Figure A.1, this would correspond to a curated knowledge base
(structured or semi-structured with natural language data) having to be mapped
to a natural language answer or logical fact. A NeSy model, mainly its sym-
bolic component, is challenged to perform transitive reasoning to discover new
knowledge given the KB to answer a user-given query. Example datasets include
MedHop, WikiHop and Freebase.

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 23

Framework for Neuro-Symbolic Benchmarks

Figure 3.10: General framework for benchmarks of neuro-symbolic models. Essentially,
benchmarks test whether a model can successfully map an input to a desired output,
with differences arising from the modalities of input/output and the process of transform-
ing it, whether it’s through parameterized functional approximation, logical inference or
both. Annotated version is found in Appendix Figure A.1

• Task-driven Reasoning: In Figure 3.10 or red arrow in Figure A.1, this would
correspond to a small-scale, prescribed knowledge base (a logic program) hav-
ing to be mapped to a knowledge base through logical inference. These kinds
of tasks often involve researches to define a small world. NeSy models are then
tasked to reach certain specified goal condition whilst ensuring satisfiability of
the final proof. Challenges tied to this form of reasoning include prevention of
time overflow when searching for rules, as well as the soundness of the final
proof. It is noteworthy the flexibility of prescribing the logic program has al-
lowed researchers to convert traditional learning tasks such as regression, classi-
fication and unsupervised clustering into reasoning ones [Donadello et al., 2017].
Other examples include the classical Block’s World problem and sorting arrays.

• Object-centric Abstract Reasoning: In Figure 3.10, or green arrow in Figure
A.1, this would correspond to a mapping between a curated dataset of images to
images. Under this branch, we incorporate reasoning datasets like PGMs and its
variants such as RAVEN’s progressive matrices. We also refer to ARC[Chollet, 2018]
and variants like ConceptARC [Moskvichev et al., 2023].

• Object-centric Counterfactual Reasoning: In Figure 3.10, or black-dotted ar-
row in Figure A.1, this would correspond to the same mapping procedure as
Object-centric Relational Reasoning. However, counterfactual queries pose hy-
pothetical questions about objects or events which haven’t happened, i.e., ”what
if” scenarios. In contrast, relational queries ask about objects which are present
in the image. A canonical example is from the CLEVRER, where counterfactual
queries can take the form ”Without a gray object, which (collision) event will
not happen?”[Yi et al., 2020].

We note that although we partition reasoning tasks into five categories, boundaries are
not definite and it is often the case that a benchmark combine different tasks of rea-
soning tasks. For example, the model DeepProbLog by [Manhaeve et al., 2021] both

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 24

prescribe a program for task-driven reasoning to define a addition over digits, where
digits images from the MNIST dataset, altogether a form of object-centric relational
reasoning. Table 3.2 describes how our framework can embody a wide spectrum of
benchmarks and detail their challenging aspects, which serves as more compact sum-
mary for Table A.2.

Given our classification system and framework, we chart out how our benchmark suite
should be designed and aim to build it in a way to test each reasoning task, with their
respective challenges. As noted previously, because NeSy AI is the assembly of dif-
ferent components, it inherits challenges unique to each one of them. On the neural
side, it is common for benchmarks to assess classification or prediction accuracy pre-
and post-training, evaluating the model’s ability to maximize training accuracy and
minimize generalization error. On the symbolic side, however, challenges arise dur-
ing the inference phase, i.e., whether the arrived proof actually satisfies the query and
whether it can be done in a tractable amount of time2. A common benchmark, hence,
must account for different evaluation metrics to assess both the neural and symbolic
component.

2In technical terms, symbolic models which perform logic programming and proves a query, or
probabilistic logic programming where the probability of a query is calculated, performing exact infer-
ence becomes a non-polynomial (NP task). It is therefore a challenge for symbolic models to perform
approximate inference in order to reduce computational complexity

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 25

NeSy models Neural components Symbolic compo-
nents

Categorization

DreamCoder Program recognition
module

Program synthesis {[Ne]}HOL or
{[Ne]}{[HOL]}

NeSy-Visual
Question
Answering
(VQA)

Mask RCNN for im-
age recognition +
LSTM to parse ques-
tions

SQL-like Query ex-
ecutor

{[Ne]}HOL

αILP Pretrained Slot At-
tention

Differentiable
forward reasoner

Ne{[FOL]}

DeepProbLog User-specified neu-
ral network

ProbLog using prob-
abilistic circuits for
scalable inference

Ne{[FOL]} or
{[Ne]}{[FOL]}

Neural
Markov Logic
Networks
(NMLM)

Standard feedfor-
ward neural net-
works to represent
factor graph

Probabilistic infer-
ence

Ne{[FOL]}

Logic Tensor
Networks

User-specified neu-
ral network

User-specified logic
program in Real
Logic

Ne : {Fuzzy
FOL}

Relational
Neural Ma-
chine

Neural Markov
Logic Networks

Weighted proba-
bilistic inference

Ne : {Fuzzy
FOL}

Semantic
Probabilistic
Layer

CNN Approximate infer-
ence using proba-
bilistic circuit

{Ne} : Fuzzy
Prop

Table 3.1: Classification of several NeSy architectures based on our taxonomy, serving
as a compact summary for Table in Appendix. We notice that nested NeSy archictures
mainly perform exact or approximate inference by employing probabilistic logic, where
neural networks estimate such probabilities. NeSy architectures which compile logical
predicates using fuzzy logic also perform probabilistic inference, as well as constrained
learning. This serves as a summary for Appendix Table A.1

Chapter 3. Unifying Framework over Neuro-Symbolic Models and Benchmarks 26

Catalogue of Benchmarks based on Five Major Reasoning Tasks
Nature of Task Input-Output Challenging Aspects Examples
Object-
Centric
Relational
Reasoning

Images and Query -
Answer

Confounding
concepts; out-
of-distribution
generalization;
interpretability

CLEVR,
Kandinsky
Patterns,
CLEVR-Hans

Multi-Hop
Reasoning

KB and Query - An-
swer

Satisfiability; search
efficiency

ChEMBL,
Wiki-Hop,
MedHop, babi

Task-Driven
Reasoning

Logic program and
Query - Answer

Satisfiability; search
efficiency

Block’s
World, Sorting
Arrays, Coin
Ball

Object-
Centric
Abstract
Reasoning

Image - Image Patterns in images
are implicit; inter-
pretability

PGM

Counterfactual
Reasoning

Image/KB and
Query - Answer

Objects in the query
are absent in dataset;
interpretability

CLEVRER

Table 3.2: Proposed taxonomy to classify reasoning tasks which serve as a preamble
to designing the common benchmark suite

Chapter 4

Common Benchmark Suite Design

4.1 SaSSY CLEVR Benchmark

While there is no common benchmark for testing NeSy models, there has been sev-
eral ones proposed for deep learning architectures spanning over computer vision and
Human language modelling. Recent years have seen interest over multimodal bench-
marks, i.e., those which can test a model’s capability to perform both visual perception
and language understanding, with tasks such as VQA.

Inspired by this, we assemble a common benchmark suite for NeSy models by collect-
ing existing benchmarks which test different types of reasoning and merge them. For
example, a similar approach has been taken by [Singh et al., 2022] where in order to
validate the strengths of a foundational vision-language model (FLAVA) they propose,
they compare available deep learning candidates on a common compendium of dif-
ferent computer-vision and language benchmarks. This include challenges spanning
from VQA, sentiment analysis, natural language inference, semantic similarity, among
others. We take inspiration from this and build our benchmark suite by assembling
together representative datasets of each kind of reasoning task we identified in Table
3.2.

The design of this benchmark suite mainly elaborates on CLEVR, as it is an overar-
ching benchmark encompassing object-centric and knowledge graph reasoning by de-
fault. We name it the SaSSY-CLEVR (short for Symbolic and Sub-Symbolic CLEVR)
common benchmark suite. We suggest the baseline used in this common benchmark
to be a purely deep learning model in order to identify the improvements that NeSy
methods can achieve. We note that all reasoning tasks expect the tested model to pro-
duce interpretable results. We proceed in detailing how each of the reasoning task is
tested in our benchmark suite:

4.1.1 Object-centric reasoning

We recycle CLEVR-Hans3 proposed by Stammer et al. (2021). CLEVR-Hans3 is a
variant of CLEVR in that there is no provided query and it is a ternary classification
task. CLEVR-Hans3 is split into a training, validation and testing partition consisting

27

Chapter 4. Common Benchmark Suite Design 28

of 9000, 2250 and 2250 samples respectively. Class assignment is evenly balanced in
each split, e.g., in the training set, each class is represented by 3000 images. A class
1 label is assigned when an image contains at least a ”large cube and large cylinder”,
while class 2 images contain at least ”a small metal cube and small sphere” and in
class 3 there is at least ”a large clue sphere and a small yellow sphere”. These classes
are mutually exclusive and images are carefully generated so as to ensure non-overlap.
By default, CLEVR-Hans3 tests a model’s robustness to generalize under visual con-
founders, i.e., during training and validation, only images with large gray cubes and
large cylinders are shown as class 1, while during testing large cubes of varying color
are introduced 4.1. Here, the color ’gray’ is a confounding concept which a DNN
may learn as a statistical artifact to decide class assignment, even though it is not a
determinant.

4.1.2 Knowledge-Graph reasoning

CLEVR’s scene annotations are essentially knowledge graphs encoding the relation-
ships between objects, their attributes and spatial relations with respect to each other.
Therefore, we employ open-source software1 to generate such scene graph annotations
for CLEVR-Hans3 and test for knowledge graph reasoning in this augmented dataset.
The scene annotations describes in detail each object appearing in the scene along
with a natural language question and answer. There are 700 thousand natural language
questions for training and 150 thousand questions for validation and testing. There
are maximum 10 entities per question, each entity with varying amount of properties
corresponding to its 3D coordinates, 2 possible materials and sizes, 3 shapes and 8
different colors. Relations can encode which object is next to one another or count-
ing how many objects are there. The evaluation metric is measured by the correctness
of answers given to test set queries and supplementary analysis can include inference
time for answering. A model that can answer the test queries correctly in the shortest
time is considered highly-performing.

4.1.3 Task-driven reasoning

We elaborate on the Block’s World Problem where the underlying task is finding a pro-
gram to map the initial state to a goal state. Similar to [Dong et al., 2019], we model
the Block’s World as a reinforcement learning problem. Different to the aforemen-
tioned authors, we integrate CLEVR-Hans3 to make the problem more challenging by
introducing a a diverse state space S and more actions in A .

Each state is a matrix S ∈ RO×D. These are object-centric representations of each
image that can be automatically retrieved in CLEVR-Hans3’s source code. Each state
represents the maximum O = 10 objects appearing in the scene, each So described
by D = 19 attributes that fall within 5 categories, and are indexed as follows: D0:3 =
3D coordinates and presence of the object, D4:6 = 3 possible shapes (sphere, cube,
cylinder), D7:8 = 2 sizes (large, small), D9:10 = 2 materials (rubber, metal) and D11:18 =
8 colours (cyan, blue, yellow, purple, red, green, grey and brown). We randomly

1https://github.com/facebookresearch/clevr-dataset-gen

https://github.com/facebookresearch/clevr-dataset-gen

Chapter 4. Common Benchmark Suite Design 29

retrieve 2 images of the training set (Figure 4.2) and set the former as initial state,
and latter as goal state. The agent has the following actions available to transform the
initial state as desired:

• move: takes a state, object ID, and (x, y, z) coordinates as input. Outputs a new
state with the specified object with updated coordinates.

• change color: takes a state, object ID, and color as input. Outputs a new state
with the specified object with updated color.

• change shape: takes a state, object ID, and shape as input. Outputs a new state
with the specified object with updated shape.

• change size: takes a state, object ID, and size as input. Outputs a new state with
the specified object with updated size.

• change material: takes a state, object ID, and material as input. Outputs a new
state with the specified object with updated material.

• add: takes a state and object ID. Outputs a new state with a new object.

– A new object is instantiated at the coordinates (0.5875, 0.5875, 0.5875) as
a large, rubber, cyan sphere by default.

– Such object can only be instantiated at an empty slot.

• remove: takes a state and object ID. Outputs a new state with the object re-
moved.

Thus, this reinforcement problem has an overall goal of estimating the optimal policy
π∗ : S → A that can output the sequence of (valid) actions that map the the initial state
to final state. The reward space R consists of positive reward, e.g. +1, for reaching the
final state, negative (e.g. −10 for illegal actions like adding an object in the position
of an existing one and 0 otherwise. To avoid the trivial solution whereby all objects
are removed and objects in the final state are added, the minimum description length
(MDL) of the solution program is accounted as part of the reward. Evaluation metrics
include satisfiability of the found program, and supplementary analysis can include
inference time over the number of predicates. Interpretability is assessed by the rules
found by the model.

The above setting is subject to change in future work. For example, the problem’s
complexity can increase by integrating probability distributions to the actions to, such
as changing color of an object only having a 90% probability of success. More features
such as the relative position between objects can be added to increase the dimension-
ality of S .

4.1.4 Object-centric abstract reasoning

We draw inspiration from PGMs and design IQ-style patterns of images generated with
OpenCV following simple rules of counting, positioning and sizing. Each training
instance consists of 4 panels of images: a sequence of 3 preceding panels showing
objects moving with an implicit pattern followed by an empty panel.

Chapter 4. Common Benchmark Suite Design 30

Influenced by the Abstract Reasoning Corpus [Chollet, 2018], and unlike prior work
like PGMs which focuses on providing multiple choice answers, our task is designed
for the model to generate the panel that follows the abstract pattern observed in pre-
viously. This choice is to avoid commonly reported problems in statsitical learning
where models choose the correct answer often based on exploiting unanticipated ar-
tifacts in the training dataset. For example, a correct panel is chosen not because it
completes a pattern, but rather because by coincidence most correct answers during
training had a large number of objects appearing in it (for a more elaborate argument
please see [Zhang et al., 2023]).

We consider each image as having at most 6 objects, each taking at one of 2 pos-
sible shapes (squares and circles), and 6 possible colors (red, blue, green, orange,
yellow, gray). This follows the domain setting as the Sort-of-CLEVR dataset by
[Santoro et al., 2017] (except that we do not generate images where objects are ran-
domly placed along with relational or non-relational queries). Implict patterns fol-
lowed by images synthetized include:

• arithmetic progression: each subsequent panel has an additional object. It
could be one or two more objects.

• (counter-)clockwise rotation: an object appears following a (counter-)clockwise
movement.

• alternating size: an object alternates between small and large sizes for each
subsequent panel.

• composition of implicit patterns: to increase the diversity of patterns, we
compose them to generate novel variants. For example, an arithmetic, clockwise
rotation consists of objects appearing in clockwise manner, each panel having
said object’s number 4.3.

Furthermore, we draw inspiration from CLEVR-Hans3 [Stammer et al., 2021a] by de-
signing the abstract reasoning task to be more challenging by introducing cofounders
during testing. For example, given the example in Figure 4.3, the model learns to
complete the pattern seeing only blue squares. During testing, the confounder is in-
troduced and the center square can have varying color for the 3 preceding panels, e.g.
green. If the model understood the pattern, then it should disentangle color from the
clockwise-increase pattern.

We generate 3000 training instances, 750 validation, and 750 testing instances. These
are generated with different patterns aforementioned (and composition of them) along
with confounders. Each image has an underlying matrix representation as in [Chollet, 2018].
Our evaluation metric is an average of the pixel-wise similarity of the generated image
to the ground-truth.

4.1.5 Counter-factual reasoning

CLEVR’s queries do not originally test for counterfactual reasoning, referring to queries
which ask for situations that are not explicitly shown in the scene nor its scene graph
annotations, e.g., ”how many red objects are there if the sphere is removed?”. Rather,

Chapter 4. Common Benchmark Suite Design 31

Query type Original Counterfactual
Query attribute What color is the thing

right of the red sphere?
What color is the thing
right of the red sphere if
the blue cube is removed?

Counting How many red cubes are
there?

How many objects will
there be if the blue metal
cube is removed?

Existence Are there any cubes to the
right of the red thing?

Will there be any cubes to
the right of the red thing if
the blue cube is removed?

Compare integer Are there fewer cubes than
red things?

Will there be fewer cubes
than red things if the red
cube is removed?

Table 4.1: Depiction of counterfactual queries corresponding to each query type from
CLEVR’s question generator.

it focuses only on relational or declarative reasoning, e.g., ”how many red objects are
there?”. To compensate for such, we propose imputing counter-factual queries to the
existing knowledge graphs of CLEVR-Hans3 retrieved from Section 4.1.2. For ev-
ery query type that is generated with the question generator, there is a counterfactual
counterpart as depicted in Table

As previously done, here we employ the question generator by [Wong et al., 2021]2

and apply it to CLEVR-Hans3. Their expanded question templates satisfy our require-
ments:

• remove: queries that ask about scenes if a subset of objects is removed, e.g, ”if
you removed the green cubes, how many cubes would be left?”.

• transform: queries ask about hypothetical scenes where a subset of objects is
modified, e.g, ”if all of the large yellow rubber things became gray spheres, how
many gray spheres would there be?”

For a NeSy model to be able to answer such queries accurately entails it not only under-
stands the existing relationships of objects present, but also reason about hypothetical
situations, which may exponentially increase the state space to account for. The evalu-
ation metric is similar to that of reasoning over knowledge graphs, namely correctness
of the answer and tractability of obtaining it.

2https://github.com/ellisk42/ec/tree/icml_2021_supplement/data/clevr/questions

https://github.com/ellisk42/ec/tree/icml_2021_supplement/data/clevr/questions

Chapter 4. Common Benchmark Suite Design 32

Table 4.2: Comparison among datasets

Object-centric Knowledge Graph Task-Driven Abstract Counterfactual
ARC [Chollet, 2018] × × ×

PGM[Barrett et al., 2018] × ×
Block’s World[Dong et al., 2019] ×

CLEVR[Johnson et al., 2017] × ×
CLEVERER[Yi et al., 2020] × × ×

Extended CLEVR [Wong et al., 2021] × × ×
Sort-of-CLEVR [Santoro et al., 2017] ×
CLEVR-Hans [Stammer et al., 2021a] ×

SASSY-CLEVR (Ours) × × × × ×

Table 4.3: A cross represents whether the benchmark accounts for this type of rea-
soning as argued in Table 3.2. We incorporate here the datasets that serve as main
inspiration for SASSY-CLEVR

4.2 Implications of Successful Completion of our Bench-
mark

As reiterated previously, proposing this standard benchmarks serves to fill in a con-
cerning loophole within the research community of NeSy reasoners, which is being
able to comprehensively contrast different methods in order to obtain a accurate grasp
of their potential, their weaknesses and how to optimize them.

Because we suggest at least using a deep neural network as a baseline, we expect that
completing our common benchmark using a NeSy approach also serves to highlight
the strengths of the NeSy methods assessed. On one hand, completing SaSSY-CLEVR
is not solely an endeavor of achieving high scores in the evaluation metrics of each
reasoning task. It is also equally important outlining the reasoning procedure that leads
to such high accuracy, such as outputting the logic program which helped map the input
to the desired output. Being able to complete all the reasoning tasks also entails that
the NeSy method can process multiple input modalities such as knowledge graphs and
logic programs on top of unstructured data like image tensors, or word tokens. In Table
4.3, we compare our benchmark suite with existing benchmarks in order to highlight
the multimodal, heterogeneity in reasoning tasks our benchmark addresses. We note
that our SaSSY-CLEVR simply makes incremental updates to existing benchmarks by
assembling different datasets together. For example, we simply adapt CLEVERER’s
counterfactual queries to knowledge graphs of CLEVR. We also simply adapt Sort-
of-CLEVR so that it can test abstract reasoning, rather than object-centric relational
reasoning as the original authors intended.

Our benchmark mainly focuses on reasoning tasks, i.e, mostly testing NeSy models
which have a dominant symbolic component and perform probabilistic inference where
neural networks act as probability estimators for the predicates. For exaample, our
benchmark does not account for learning tasks involving constrained optimization.
Examples falling into this category involve finding the shortest path given an input
image of a map, or a multilabel classification task known as preference learning. Other
classical learning tasks include linear or logistic regression along with unsupervised
clustering. We reiterate, however, that given a thoroughly specified logic program

Chapter 4. Common Benchmark Suite Design 33

as done in Logic Tensor Networks by [Donadello et al., 2017], these learning tasks
can be framed as task-driven reasoning tasks. Thus, a model that can complete the
task-driven reasoning portion of SASSY-CLEVR can also complete these traditional
learning problems.

Chapter 4. Common Benchmark Suite Design 34

CLEVR-Hans3 Sample

Figure 4.1: Illustration of CLEVR-Hans3. Class 1 and 2 contain confounders enclosed
in parentheses, i.e., during training and validation phases, only images with large gray
cubes and small metal spheres will be shown with their respective positive labels. Dur-
ing testing, these confounders are relaxed. Each image is coupled with a knowledge
graph detailing aspects of each object. Figure extracted from [Stammer et al., 2021a].
The evaluation metric is measured by classification accuracy on the test set.

Figure 4.2: Two image samples from the training set are randomly sampled. Their
obejct-centric representation is computed to obtain the start and goal state.

Chapter 4. Common Benchmark Suite Design 35

Conceptual description of the IQ-style pattern of images

Figure 4.3: A sequence of three images following an implicit pattern is fed into the model
and it has to predict the image that most likely completes the pattern. In this case, the
pattern is a clockwise increase of red circles

Chapter 5

Experiments

5.1 Methodology

Our benchmark is challenging due to its heterogeneity of tasks addressed. Owed to
this, for this thesis we only focus on the task of Object-Centric Relational Reason-
ing, i.e., CLEVR-Hans3. We mainly elaborate on prior work already proposing archi-
tectures solving CLEVR-Hans3, namely a NeSy architecture called Concept Learner
proposed by [Stammer et al., 2021a] and a model which performs Inductive Logic Pro-
gramming (ILP) αILP by [Shindo et al., 2023]. Both models share a common neural
component: a Slot Attention pretrained on CLEVR’s scene graph annotations to output
an object-centric representation of an input image. This is a tensor Z∈RB×O×D, where
B is the batch size, O is 10 the maximum amount of objects that can appear in a scene,
and D is 19 corresponding to the attributes that describe each object as mentioned in
subsection 4.1.3. Hence, a single slot represents an object identified in the image, and
the associated 19-dimensional vector refers to an unnormalised probability distribution
over the attributes of this object. In both NeSy architectures, the parameters of the Slot
Attention are fixed.

In the Concept Learner [Stammer et al., 2021a], this object-centric representation is
passed to a Set Transformer which during training learns which attributes to attend to
in order to derive the class label (Figure 5.1). In αILP [Shindo et al., 2023], this repre-
sentation is converted into probabilistic facts used to assess how useful is each of the
clauses, found through top-k beam search, in predicting the class label. Clauses im-
prove iteratively over training epochs (Figure 5.2). Candidate clauses are formed from
the logic program consisting of the following binary probabilistic logic predicates:

• in/(2, [ob j, image]): probability that one of the 10 possibles objects is in the
image

• shape/(2, [ob j,shape]): probability that the object is of possible shapes cube,
cylinder or sphere

• color/(2, [ob j,color]): probability that the object is one of the colors cyan, blue,
yellow, purple, red, green, gray, brown

36

Chapter 5. Experiments 37

Figure 5.1: NeSy Pipeline. Given an input image, it is first passed to the Slot Attention
which encodes it into a tensor which is an object-centric disentangled representation
of it. The Set Transformer takes this representation and learns during training which
attributes are the most relevant to derive the class assignment of the iamge. The original
NeSy model also had a visual and semantic explainer which were ignored in this thesis
out of concerns for fairness in model comparison, e.g., our model candidate αILP is not
designed to output saliency maps [Stammer et al., 2021a]

• material/(2, [ob j,material]): probability that the object is one of the material
rubber or metal.

• size/(2, [ob j,size]): probability that the object is one of the sizes large or small.

Both authors empirically found that their models could consistently outperform the
pure deep learning baseline, a ResNet34. This means that both models can tolerate the
visual confounder during testing, a sign that they were able to disentangle the concepts
of color from shape or size, unlike the ResNet34 which overfits to it.

However, in our present thesis, in addition to assessing them again on CLEVR-Hans3,
we aim to run fairer model comparisons between NeSy architectures and a pure deep
learning baseline. This is because in their original works, we note striking unfairness
in model comparison given that the pure deep learning baseline considered, ResNet34,
is directly compared to Concept Learner or αILP . Although the ResNet34 have 40
times as many parameters than either NeSy architecture, it is pretrained on an sub-
stantially different dataset, ImageNet. Its NeSy counterparts, on the other hand, had a
Slot Attention with the unfair advantage of being pretrained on CLEVR’s scene graph
annotations which is highly convenient for solving CLEVR-Hans3 [An et al., 2023]
because it offers a disentangled representation of the input image. As a result of this,
it is not evident the advantages of NeSy modelling over pure deep learning since it is
not a carefully controlled comparison. In order to account for this, we introduce an-
other model variant, a ResNet acting as the ”symbolic component” which receives the
object-centric representation of the Slot Attention in order to derive the class label. If
NeSy architectures can improve over this baseline, then it would validate the strengths
of NeSy modeling since it would imply the necessity of the symbolic component for
solving complicated classification tasks like CLEVR-Hans3.

5.1.1 Models’ Setups

Following the above motivation, we consider the below model variants to be assessed
on CLEVR-Hans3:

Chapter 5. Experiments 38

Figure 5.2: αILP Pipeline. At the initial stages of training, a group of candidate clauses
are generated by top-k beam search. The weights for the generated clauses are trained
to minimize the loss function measuring the goodness of each clause in predicting
the class label of the input images. Through an iterative process, αILP tries to find
clauses which better explain the visual scenes by gradient descent. Figure extracted
from [Shindo et al., 2023]

1. ResNet18: Following from their works, we use ResNet18 as our pure deep
learning baseline. We opted for this smaller version in contrast to the tradi-
tional ResNet34 for computational convenience during training. We load it pre-
trained on ImageNet and replace its last layer with a linear one over 3 classes
before training it on CLEVR-Hans3. We note that despite having half the size of
ResNet34, we are still able to closely replicate results reported by both [Stammer et al., 2021a]
and [Shindo et al., 2023] as Table A.3 shows.

2. Reasoning ResNet18 (Slot Attention + ResNet18): We assemble the Slot At-
tention pre-trained on CLEVR and a ResNet18 pre-trained on ImageNet aiming
for a more controlled comparison. To link them together, the object-centric rep-
resentation output by the Slot Attention is given as an input to the ResNet18.
Here, the ResNet18 can be thought of as the baseline for the symbolic com-
ponent, i.e., either the Set Transformer or Forward Reasoner, hence we name
it Reasoning ResNet18. Because the Slot Attention’s output is tridimensional
B×O×D, lacking the dimension for channels, we concatenate three replicas of
this object-centric representation to obtain a B×3×O×D tensor that can be fed
to the ResNet18.

3. Concept Learner (Slot Attention + Set Transformer): This model variant is
the same as described in [Stammer et al., 2021a]

4. αILP (Slot Attention + Forward Reasoner): This variant is the same as de-
scribed in [Shindo et al., 2023]. It is worth noting that αILP has a different
training regime than the above models. By design of ILP problems, the model
is unable to solve the ternary classification task of CLEVR-Hans3, but rather the
problem has to be framed as 3 binary classification tasks, i.e., 3 ILP tasks. For
example, αILP first learns to recognize class 0 images by looking at 3000 posi-

Chapter 5. Experiments 39

tive instances of it, as well as 6000 negative samples (class 1 and 2). Two other
independent αILP repeat this procedure for class 1 and 2 images. The train-
ing, validation and testing accuracies achieved by the three models are averaged
to obtain a representative score of how well it predicts on the CLEVR-Hans3
problem as a whole.

We trained them by minimizing the cross-entropy loss with the same hyperparameter
configuration whenever possible: 50 training epochs, a learning rate of 1e−4, batch
size of 128, Adam optimizer β1 = 0.9,β2 = 0.999,ε = 1e−8 and zero weight decay.
The Slot Attention have three more hyperparameters set: 10 slots, 3 iterations per
slot attention, and 19 attribute. For αILP , extra hyperparameters concerning top-
k beam search include for depth of search Tbeam, which for class 0 is: Tbeam = 5,
class 1: Tbeam = 6, class 2: Tbeam = 7. All classes have width of beam Nbeam = 20
and 2 as a maximum number of objects. To quantify the uncertainty of our models’
performances, each is run for 3 random seeds, whereby for αILP it means each class
is ran 3 times, with training, validation, and testing accuracies across classes averaged
and reported. We also note that to train αILP for class 0 and class 1 binary classification
tasks, we had to reduce batch size down to 16 given that our available computational
resources face a bottleneck if the batch size is bigger. For training class 2, the batch
size had to be scaled down to 8 to avoid memory allocation problems. This is most
likely due to longer clauses, as well as higher amount of predicates and facts involved
in recognizing class 2 images. The batch size for beam search during validation and
testing was set to 24, albeit we note that this does not affect training, but is rather used
to speed up inference by exploiting batch computation.

5.2 Results and Discussion

The results of our experiments in Figure 5.3 are mostly in tandem with the ones reached
by the above authors. Namely, NeSy modeling outperforms the pure deep learning
baseline of ResNet18 because the latter learnt a distributed representation of the train-
ing data which easily conflated the concepts of shape and color during training. This
is evidenced by the perfect training accuracy, followed by a sharp drop in testing ac-
curacy attributed to the confounder. Interestingly, however, our Reasoning ResNet18’s
performance was able to perform slightly better than the Concept Learner by about
3% (see Table A.3), proving that [Stammer et al., 2021a]’s Set Transformer is a re-
placeable ”reasoning” component in the NeSy architecture. This is mainly due to the
contribution of the Slot Attention being more important than the symbolic component’s
given that the former is greatly simplifying the CLEVR-Hans3 classification task by
providing a very useful feature decomposition of the input space.

We did not match our classification scores for αILP to those reported by [Shindo et al., 2023]
(almost 98% for validation and testing), partly because we did not follow their hyper-
parameter configuration out of the aspiration for controlled inter-model comparison,
i.e., they employ a batch size of 256 with an optimizer of RMSProp with a learning
rate of 0.01 and 100 training epochs. Despite that, in our experiments, αILP is the
best performing model especially when we observe its testing accuracy which is the
highest among the 4 variants, meaning that it successfully disentangled the confounder

Chapter 5. Experiments 40

Figure 5.3: Classification accuracies obtained for the 4 model variants. αILP is the best
performing model, albeit at the cost of being subject to unfair amount of supervision.

for class 0 and 1 images. Furthermore, another attractive feature of αILP is the trans-
parency of the logic program. Namely, we can pinpoint that the cause of the high
classification performance is due it accurately finding the clauses which closely or per-
fectly match the classification rules for each class (recall from Figure 4.1). Below is
one example per class of the final clause found:

• clevr0(X) :- in(O1,X), in(O2,X),shape(O1,cylinder),shape(O2,cube),
size(O1, large),size(O2, large).

• clevr1(X) :- in(O1,X), in(O2,X),material(O2,metal),shape(O1,sphere),
shape(O2,cube),size(O1,small),size(O2,small).

• clevr2(X) :- color(O1,blue),color(O2,yellow), in(O1,X), in(O2,X),
shape(O1,sphere),shape(O2,sphere),size(O1, large),size(O2,small)

The large variance of the accuracies can be attributed to it sometimes being unable to
find the best rules due to only 50 training epochs and small learning rate. For example,
in one of the random seeds for class 0, αILP was only able to find a clause ”a small
sphere and small metal cube” that minimally approximated to the ground truth rule:
clevr0(X) :−in(O1,X), in(O2,X),material(O2,metal),shape(O1,sphere),
shape(O2,cube),size(O1,small),size(O2,small)

Another interesting aspect of αILP is the series of evaluation metrics one can assess

Chapter 5. Experiments 41

it with, such as clause generation time and prediction time over batch size of images
queried, both which are proxies for measuring the tractability of the logic program
found. While we did not focus on running such evaluations despite it being a core
aspect of our proposed SaSSY-CLEVR benchmark, we point to [Shindo et al., 2023]
to the interested reader for the ablation study they performed.

One concerning limitation of αILP is that despite it supports batch computation for
probabilistic inference over multiple images, because this model Ne[FOL] belongs to
the family of nested architectures, it faces bottlenecks when scaling. With the available
computational resources, we have witnessed that during training, we are unable to train
αILP with a batch size 128 without running into memory allocation errors, unlike with
counterparts like ResNet18 or the Reasoning ResNet18 which are exponentially larger
than αILP in terms of number of parameters, but simpler in terms of computation.
Another issue with αILP is that by abstracting CLEVR-Hans3 as 3 binary classification
tasks, it can be argued that it has an unfair amount of supervision since it has seen the
whole dataset for 3 times in total. Further research can seek to address these problems.

5.3 Limitations and Future Prospects

We now proceed in discussing the general limitations of NeSy models used in our ex-
periments, followed by what are the future directions that stem from this. While it is
convincing that NeSy modeling can robustly complete a classification task under visual
confounder, its seemingly over-reliance on the Slot Attention’s object centric represen-
tation can be seen as its Achille’s Heel if we wanted to test such methods on other tasks
where such pretrained model is not conveniently available. Future research direction
can therefore be aimed at exploring how we can relax the usage of the pretrained Slot
Attention. One such possibility is to employ NeSy architectures like DeepProbLog
[Manhaeve et al., 2021] or Scallop [Li et al., 2023]. For the former, consider a very
simple ProbLog inspired from CLEVR-Hans3 program:

object(O) :- between(1,10,O).
nn(shape network, [X, O], Y, [sphere, cube, cylinder]) :: shape(X, O, Y) :- object(O).
nn(size network, [X, O], Y, [large,small]) :: size(X, O, Y) :- object(O).
clvr(X, C) :- size(X, Obj1 , large), shape(X, Obj1, cube), C = 0.

This probabilistic logic program is querying whether image X can be classified as 0
if there is an object of large size and cube shaped. The Problog built-in ternary pred-
icate is a generator which consider object IDs between 1 and 10, meaning that the
program will check among 10 objects whether one of them fulfills the queried proper-
ties. The probabilities of the associated predicates are estimated by neural networks,
with the advantage that it is not required for images to be given labels of which ob-
jects are present and what are the attributes per object. The logic program specification
is enough to drive the neural network to learn the probability distribution of each at-
tribute like shape and size per object. Being able to relax the Slot Attention’s usage
is also especially relevant for models which have a dominant symbolic component in
order to facilitate transferability to other domains, a known problem with NeSy ar-

Chapter 5. Experiments 42

chitectures [Hamilton et al., 2022]. For example, at its current design, it is debatable
whether αILP or the Concept Learner can solve other problems like traditional image
classification without a Slot Attention that decomposes the relevant features given an
input.

Furthermore, there are also a plethora of experimental conditions that would be in-
teresting to test using CLEVR-Hans3, such as exploring how would NeSy variants
perform when faced with dataset problems like class skewness or small training data,
in order to empirically assess whether the promises outlined in 1.2 such as being able
to learn from low training data are being upheld (for a more thorough assessment in the
field of Natural Language Processing see [Hamilton et al., 2022]). While our bench-
mark strikes to be encompassing, by no means we have covered the whole breadth of
diverse problems. For instance, theorem proving, working with sequence of mathe-
matical symbols is absent in our benchmark.

Chapter 6

Conclusions

In the present thesis, we contribute to the growing literature on NeSy the following: 1)
a general taxonomy for classifying current and future NeSy models, helping readers
first-hand estimate the streghts and weaknesses of different families of NeSy models.
2) We propose a common benchmark, SaSSY-CLEVR, which encompass important
reasoning tasks and we envision it can be used to comprehensively test a variety of
NeSy models. Finally, 3) we run experiments on one aspect of our benchmark which
enabled us to compare and contrast two different NeSy models, identify their strengths
and limitations to overcome in future research.

Neuro-Symbolic AI is still in its nascent period as evidenced by the carefully-designed
laboratory problems. However, it is quickly taking off by iteratively improving over
predecessor NeSy candidates. We look forward to empirically confirming whether
NeSy catalyzes the Third Wave of AI as argued by [Garcez and Lamb, 2020].

43

Bibliography

[Ahmed et al., 2022a] Ahmed, K., Teso, S., Chang, K.-W., Van Den Broeck, G., and
Vergari, A. (2022a). Semantic probabilistic layers for neuro-symbolic learning.

[Ahmed et al., 2022b] Ahmed, K., Teso, S., Chang, K.-W., Van den Broeck, G., and
Vergari, A. (2022b). Semantic probabilistic layers for neuro-symbolic learning.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., edi-
tors, Advances in Neural Information Processing Systems, volume 35, pages 29944–
29959. Curran Associates, Inc.

[An et al., 2023] An, X., Chen, J., and Paolo, C. (2023). Sassy (symbolic and sub-
symbolic) attention: Assessing the robustness of neuro-symbolic modelling in the
clevr-hans3 dataset. Final report for Machine Learning Practical (INFR 11132).

[Banburski et al., 2020] Banburski, A., Gandhi, A., Alford, S., Dandekar, S., Chin, S.,
and tomaso a poggio (2020). Dreaming with ARC. In Learning Meets Combinato-
rial Algorithms at NeurIPS2020.

[Barbu et al., 2019] Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund,
D., Tenenbaum, J., and Katz, B. (2019). Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models. NeurIPS Proceedings.

[Barredo Arrieta et al., 2020] Barredo Arrieta, A., Dı́az-Rodrı́guez, N., Del Ser, J.,
Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Ben-
jamins, R., Chatila, R., and Herrera, F. (2020). Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and challenges toward responsible ai.
Information Fusion, 58:82–115.

[Barrett et al., 2018] Barrett, D., Hill, F., Santoro, A., Morcos, A., and Lillicrap, T.
(2018). Measuring abstract reasoning in neural networks.

[Branwen, 2020] Branwen, G. (2020). The scaling hypothesis.

[Chavira and Darwiche, 2008] Chavira, M. and Darwiche, A. (2008). On probabilistic
inference by weighted model counting. Artificial Intelligence, 172:772–799.

[Chollet, 2018] Chollet, F. (2018). On the measure of intelligence. arXiv.

[Clark, 1997] Clark, A. (1997). Introduction: A Car with a Cockroach Brain, pages
1–8. Being there: putting brain, body, and world together again. Cambridge, Mass.
MIT.

44

Bibliography 45

[De Raedt et al., 2020] De Raedt, L., Dumančić, S., Manhaeve, R., and Marra, G.
(2020). From statistical relational to neuro-symbolic artificial intelligence.

[Diligenti et al., 2017] Diligenti, M., Gori, M., and Saccà, C. (2017). Semantic-based
regularization for learning and inference. Artificial Intelligence, 244:143–165.
Combining Constraint Solving with Mining and Learning.

[Donadello et al., 2017] Donadello, I., Serafini, L., and Garcez, A. D. (2017). Logic
tensor networks for semantic image interpretation. In Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence, IJCAI’17, page 1596–1602.
AAAI Press.

[Dong et al., 2019] Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D. (2019).
Neural logic machines. In International Conference on Learning Representations.

[Ellis et al., 2021] Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L., He-
witt, L., Cary, L., Solar-Lezama, A., and Tenenbaum, J. B. (2021). Dreamcoder:
Bootstrapping inductive program synthesis with wake-sleep library learning. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021, page 835–850, New York, NY,
USA. Association for Computing Machinery.

[Evans and Grefenstette, 2018] Evans, R. and Grefenstette, E. (2018). Learning ex-
planatory rules from noisy data. J. Artif. Int. Res., 61(1):1–64.

[Garcez and Lamb, 2020] Garcez, A. d. and Lamb, L. C. (2020). Neurosymbolic ai:
The 3rd wave. arXiv:2012.05876 [cs].

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[Hamilton et al., 2022] Hamilton, K., Nayak, A., Božić, B., and Longo, L. (2022). Is
neuro-symbolic ai meeting its promises in natural language processing? a structured
review. Semantic Web, pages 1–42.

[Harmelen and Teije, 2019] Harmelen, F. v. and Teije, A. t. (2019). A boxology of
design patterns for hybrid learning and reasoning systems. Journal of Web Engi-
neering, 18:97–124.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778.

[Hersche et al., 2023] Hersche, M., Zeqiri, M., Benini, L., Sebastian, A., and Rahimi,
A. (2023). A neuro-vector-symbolic architecture for solving raven’s progressive
matrices. Nature Machine Intelligence, 5(4):363–375.

[Higgins et al., 2018] Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L.,
Rezende, D., and Lerchner, A. (2018). Towards a definition of disentangled rep-
resentations. arXiv:1812.02230 [cs, stat].

[Johnson et al., 2017] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zit-
nick, C. L., and Girshick, R. (2017). Clevr: A diagnostic dataset for compositional

http://www.deeplearningbook.org

Bibliography 46

language and elementary visual reasoning. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Kaplan et al., 2020] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess,
B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws
for neural language models. arXiv:2001.08361 [cs, stat].

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural networks. Communications of
the ACM, 60:84–90.

[Lample and Charton, 2019] Lample, G. and Charton, F. (2019). Deep learning for
symbolic mathematics. arxiv.

[Li et al., 2018] Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Vi-
sualizing the loss landscape of neural nets. In Advances in Neural Information
Processing Systems, pages 6389–6399.

[Li et al., 2023] Li, Z., Huang, J., and Naik, M. (2023). Scallop: A language for
neurosymbolic programming. arXiv:2304.04812 [cs].

[Liu et al., 2021] Liu, H., Dai, Z., So, D. R., and Le, Q. V. (2021). Pay attention to
mlps. arXiv:2105.08050 [cs].

[Lu et al., 2021] Lu, K., Grover, A., Abbeel, P., and Mordatch, I. (2021). Pretrained
transformers as universal computation engines. arXiv:2103.05247 [cs].

[Manhaeve et al., 2021] Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., and
De Raedt, L. (2021). Neural probabilistic logic programming in deepproblog. Artif.
Intell., 298(C).

[Mao et al., 2019] Mao, J., Gan, C., Deepmind, P., Tenenbaum, J., and Wu, J. (2019).
The neuro-symbolic concept learner: Interpreting scenes, words, and sentences
from natural supervision. arxiv.

[Marra et al., 2020] Marra, G., Diligenti, M., Giannini, F., Gori, M., and Maggini, M.
(2020). Relational neural machines. arXiv.

[Marra and Kuželka, 2021] Marra, G. and Kuželka, O. (2021). Neural markov logic
networks. In de Campos, C. and Maathuis, M. H., editors, Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of
Proceedings of Machine Learning Research, pages 908–917. PMLR.

[Marra and Kuželka, 2020] Marra, G. and Kuželka, O. (2020). Neural markov logic
networks. arXiv.

[McCarthy et al., 1955] McCarthy, J., Minsky, M. L., Rochester, N., and Shannon,
C. E. (1955). A proposal for the dartmouth summer research project on artificial
intelligence. AI Magazine, 27:12–14.

[McClelland et al., 1986] McClelland, J., Rumelhart, D., and Hinton, G. (1986). The
appeal of parallel distributed processing. In Parallel Distributed Processing: Explo-

Bibliography 47

rations in the Microstructure of Cognition, Vol. 1: Foundations, pages 3–44. MIT
Press.

[Minsky, 1990] Minsky, M. (1990). Logical vs.analogical or symbolic vs. connection-
ist or neat vs. scruffy.

[Misino et al., 2022] Misino, E., Marra, G., and Sansone, E. (2022). Vael: Bridging
variational autoencoders and probabilistic logic programming. arxiv.

[Moor, 2006] Moor, J. (2006). The dartmouth college artificial intelligence confer-
ence: The next fifty years. AI Magazine, 27:87–91.

[Moskvichev et al., 2023] Moskvichev, A. K., Odouard, V. V., and Mitchell, M.
(2023). The conceptARC benchmark: Evaluating understanding and generaliza-
tion in the ARC domain. Transactions on Machine Learning Research.

[Muthukrishnan et al., 2020] Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C.,
Forghani, B., and Forghani, R. (2020). Brief history of artificial intelligence. Neu-
roimaging Clinics of North America, 30:393–399.

[Nilsson, 2009] Nilsson, N. J. (2009). Part I - Beginnings, pages 17–71. The Quest
for Artificial Intelligence. Cambridge University Press.

[Rocktäschel and Riedel, 2017] Rocktäschel, T. and Riedel, S. (2017). End-to-end
differentiable proving. In Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page 3791–3803, Red Hook, NY,
USA. Curran Associates Inc.

[Saker et al., 2021] Saker, K., Zhou, L., Eberhart, A., and Hitzler, P. (2021). Neuro-
symbolic artificial intelligence current trends. arxiv.

[Santoro et al., 2017] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pas-
canu, R., Battaglia, P., and Lillicrap, T. (2017). A simple neural network module for
relational reasoning. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 4974–4983, Red Hook, NY, USA.
Curran Associates Inc.

[Shindo et al., 2023] Shindo, H., Pfanschilling, V., Dhami, D. S., and Kersting, K.
(2023).

α

ilp: thinking visual scenes as differentiable logic programs. Machine Learning.

[Singh et al., 2022] Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba, W.,
Rohrbach, M., and Kiela, D. (2022). Flava: A foundational language and vision
alignment model (preprint). arXiv:2112.04482 [cs].

[Stammer et al., 2021a] Stammer, W., Schramowski, P., and Kersting, K. (2021a).
Right for the right concept: Revising neuro-symbolic concepts by interacting with
their explanations.

[Stammer et al., 2021b] Stammer, W., Schramowski, P., and Kersting, K. (2021b).
Right for the right concept: Revising neuro-symbolic concepts by interacting with

Bibliography 48

their explanations. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3618–3628.

[Sun et al., 2022] Sun, J., Tjandrasuwita, M., Sehgal, A., Solar-Lezama, A., Chaud-
huri, S., Yue, Y., and Costilla-Reyes, O. (2022). Neurosymbolic programming for
science. arxiv.

[Van Emden and Kowalski, 1976] Van Emden, M. H. and Kowalski, R. A. (1976). The
semantics of predicate logic as a programming language. Journal of the ACM,
23:733–742.

[Van Krieken et al., 2022] Van Krieken, E., Thanapalasingam, T., Tomczak, J.,
Van Harmelen, F., and Ten Teije, A. (2022). A-nesi: A scalable approximate method
for probabilistic neurosymbolic inference. arXiv (preprint).

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In
Advances in Neural Information Processing Systems, pages 5998–6008.

[Šourek et al., 2015] Šourek, G., Aschenbrenner, V., Železny, F., and Kuželka, O.
(2015). Lifted relational neural networks. In Proceedings of the 2015th Inter-
national Conference on Cognitive Computation: Integrating Neural and Symbolic
Approaches - Volume 1583, COCO’15, page 52–60, Aachen, DEU. CEUR-WS.org.

[Weber et al., 2019] Weber, L., Minervini, P., Münchmeyer, J., Leser, U., and
Rocktäschel, T. (2019). NLProlog: Reasoning with weak unification for question
answering in natural language. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 6151–6161, Florence, Italy. As-
sociation for Computational Linguistics.

[Wong et al., 2021] Wong, C., Ellis, K. M., Tenenbaum, J., and Andreas, J. (2021).
Leveraging language to learn program abstractions and search heuristics. In Meila,
M. and Zhang, T., editors, Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pages
11193–11204. PMLR.

[Xu et al., 2018a] Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van Den Broeck, G.
(2018a). A semantic loss function for deep learning with symbolic knowledge.

[Xu et al., 2018b] Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den Broeck, G.
(2018b). A semantic loss function for deep learning with symbolic knowledge. In
Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5502–5511. PMLR.

[Yang et al., 2017] Yang, F., Yang, Z., and Cohen, W. W. (2017). Differentiable learn-
ing of logical rules for knowledge base reasoning. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, NIPS’17, page
2316–2325, Red Hook, NY, USA. Curran Associates Inc.

Bibliography 49

[Yi et al., 2020] Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., and Tenen-
baum, J. (2020). Clevrer: Collision events for video representation and reasoning.
International Conference on Learning Representations.

[Yi et al., 2018] Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum, J. B.
(2018). Neural-symbolic vqa: Disentangling reasoning from vision and language
understanding. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 1039–1050, Red Hook, NY, USA.
Curran Associates Inc.

[Yu et al., 2022] Yu, D., Yang, B., Liu, D., Wang, H., and Pan, S. (2022). Recent
advances in neural-symbolic systems: A survey.

[Yu et al., 2014] Yu, W., Yang, K., Bai, Y., Yao, H., and Rui, Y. (2014). Visualizing
and comparing convolutional neural networks. arxiv.org.

[Zhang et al., 2019] Zhang, C., Gao, F., Jia, B., Zhu, Y., and Zhu, S.-C. (2019). Raven:
A dataset for relational and analogical visual reasoning. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 5312–5322.

[Zhang et al., 2021] Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli,
D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., Sellitto, M., Shoham, Y.,
Clark, J., and Perrault, R. (2021). Chapter 2: Technical performance in artificial
intelligence index report 2021 artificial intelligence index report 2021 2.

[Zhang et al., 2023] Zhang, H., Li, L. H., Meng, T., Chang, K.-W., and den Broeck.,
G. V. (2023). On the paradox of learning to reason from data. In IJCAI.

Appendix A

First appendix

A.1 Survey of NeSy Models and Taxonomical Catego-
rization

NeSy models Neural compo-
nents

Symbolic compo-
nent

Taxonomical
categoriza-
tion

Description

DreamCoder [Ellis et al., 2021] Program recogni-
tion module

Program synthesis {[Ne]}HOL
or
{[Ne]}{[HOL]}

NN decides how to chunk
primitive operators into
reusable programs

NeSy-Visual Question An-
swering (VQA) [Yi et al., 2018]

Mask RCNN for
image recognition
+ LSTM to parse
questions

SQL-like Query
executor

{[Ne]}HOL NN learns to output SQL-
table representation and
symbolic component exe-
cute SQL-query

NeSy-Dynamic Reasoner
(DR)
[Yi et al., 2020] Video frame and

Question Parsers
SQL-like Query
executor

{[Ne]}HOL See NeSy-VQA

αILP [Shindo et al., 2023] Pretrained Slot At-
tention

Differentiable for-
ward reasoner

Ne{[FOL]} NN output object-centric
representation and forward
reasoner learns classifica-
tion rule

DeepProbLog
[Manhaeve et al., 2021] User-specified neu-

ral network
ProbLog using
probabilistic cir-
cuits for scalable
inference

Ne{[FOL]}
or
{[Ne]}{[FOL]}

Probabilities of neural
predicates are estimated by
NNs with feedback from
ProbLog program

Scallop [Li et al., 2023] User-specified neu-
ral network

Probabilistic infer-
ence

Ne{[FOL]}
or
{[Ne]}{[FOL]}

See DeepProbLog

δILP
[Evans and Grefenstette, 2018] User-specified neu-

ral network
Inductive Logic
Programming
component

Ne{[FOL]} See DeepProbLog

Neural Logic Machine
(NLM)
[Dong et al., 2019] User-specified neu-

ral network
User-specified
logic program

Ne{[FOL]} See DeepProbLog

Neural Markov Logic Net-
works (NMLM)
[Marra and Kuželka, 2021] Standard feed-

forward neural
networks to repre-
sent factor graph

Probabilistic infer-
ence

Ne{[FOL]} The NN learns under con-
straints imposed by FOL
prior knowledge

50

Appendix A. First appendix 51

Logic Tensor Networks
(LTN) [Donadello et al., 2017]

User-specified neu-
ral network

User-specified
logic program in
Real Logic

Ne : {Fuzzy
FOL}

See NMLM

Relational Neural Machine
(RLM) [Marra et al., 2020]

Neural Markov
Logic Networks

Weighted proba-
bilistic inference

Ne : {Fuzzy
FOL}

See NMLM

DiffLog
(Si et al. 2019) Markov Logic Net-

work
Probabilistic infer-
ence

Ne{[FOL]} See NMLM

Lifted Relational Neu-
ral Networks (LRNN)
[Šourek et al., 2015]

Neural Markov
Logic Networks

Probabilistic infer-
ence

Ne : {Fuzzy
FOL}

See NMLM

Tensorlog [Cohen et al.,
2017]

Neural Markov
Logic Networks

Probabilistic infer-
ence

Ne{[FOL]} See NMLM

Neural Logic Programming
(NeuralLP) [Yang et al., 2017]

Neural Markov
Logic Networks

Probabilistic infer-
ence

Ne{[FOL]} See NMLM

Neural Theorem
Provers (NTP)
[Rocktäschel and Riedel, 2017]

Standard feedfor-
ward network

Backward chaining Ne : {Fuzzy
FOL}

Vector representations of
logical predicates

Semantic-based regulariza-
tion (SBR) [Diligenti et al., 2017]

Markov Logic Net-
works

Probabilistic infer-
ence

Ne : {Fuzzy
FOL}

NLProlog [Weber et al., 2019] Pretrained sentence
encoders

Prolog Backward
chaining

Ne : {Fuzzy
FOL}

Semantic Proba-
bilistic Layer (SPL)
[Ahmed et al., 2022b]

CNN Approximate infer-
ence using proba-
bilistic circuit

{Ne} :
Fuzzy Prop

Hard logical constraints over
learning

Semantic Loss Function
(SLF) [Xu et al., 2018b]

Standard feed-
forward neural
network

Maximum likeli-
hood

{Ne} :
Fuzzy Prop

Constrained learning

Variational Auto-Encoder
+ Probabilistic Logic Pro-
gramming (VAEL) [Misino
et al., 2022]

CNN Probabilistic infer-
ence

Ne : {Fuzzy
FOL}

Constrained generative ap-
proach

* NeSY-Explainable In-
teractive Learning (XIL)
[Stammer et al., 2021b]

Pretrained Slot At-
tention

Set Transformer N/A

Table A.1: A more detailed classification of NeSy architectures based on our pro-
posed taxonomy. Notice that NeSy-XIL, despite being proposed as a NeSy method
by [Stammer et al., 2021a], we argue that it’s not evident how the Set Transformer act
as a symbolic component in terms of whether it’s defined through a logical system like
a logic program.

Appendix A. First appendix 52

A.2 Survey of Benchmarks and Associated Models
Datasets Nature of

task
Format Challenging aspect Assessed

NeSy mod-
els

CLEVR Object-
centric
relational
reasoning

NS-VQA

CLEVR-CoGenT Object-
centric
relational
reasoning

Split A: 70K images and 700K
natural language questions for
training.
Split B: 15K images and 150K
questions for validation and test-
ing. Image-Text

VQA with confounding
Variables

NS-VQA

CLEVR-Hans Object-
centric
relational
reasoning

Each class is represented by
3000 training, 750 validation,
and 750 test image

Classification with visual
confounder during train-
ing

αILP;
NeSy-XIL

Procedurally Gen-
erated Matrices
Datasets

Object-
centric
relational
and Abstract
reasoning

1.2M training set questions, 20K
validation set questions, 200K
testing set questions

Implicit patterns resem-
bling IQ-tests

Kadinsky Patterns Object-
centroic
relational
reasoning

Variable, user can generate de-
sired amount of images accord-
ing to 3 classification rules

Implicit patterns resem-
bling IQ-tests

αILP

ILP experiments
(find successor,
determine even or
odd, fuzz-buzz,
etc.)

Task-driven
reasoning

20 Benchmark ILP provided by
δILP

Have to construct new
rules, ensure satisfiability
and tractability

δILP

Digit image clas-
sification (eveness,
equal to 1, less
than)

Task-driven
reasoning;
Object-
centric
relational
reasoning

10 tasks about arithmetic Satisfiability; Tractability δILP

Find if digit is fol-
lowed by subse-
quent digits

Task-driven
and Object-
centric
relational
reasoning

Variable, can syntethize as many
samples as desired

Digits are MNIST im-
ages; scalability to multi-
digits

RNM

Citeseer for docu-
ment classification
by symbolic bag of
words

Task-driven
reasoning

4732 links (relations), 3703
words (constants)

Satisfiability; Tractability RNM

MNIST Digit addi-
tion

Task-driven
reasoning;
Object-
centric
relational
reasoning

Variable, can synthetize as many
sums by picking any combina-
tion of digits

Digits are MNIST im-
ages; scalability to multi-
digits addition

DeepProbLog;
LTN

Inflammation,
polysite, sql
datasets

Knowledge
graph rea-
soning

34 benchmarks Multi-hop reasoning, KB-
completion, satisfiability

DiffLog

LRNN datasets Knowledge
graph rea-
soning

78 datasets (1 mutagenesis, 4
predictive toxicology, 73 Na-
tional Cancer Institute datasets)

Multi-hop reasoning LRNN

Unsupervised data
clustering

Task-driven
reasoning

Variable, can syntethize as many
datapoints as desired

Clustering can be written
as a logic program

LTN

Classification of
Leptograpsus crabs

Task-driven
reasoning

200 examples of 5 morphologi-
cal measurements of 50 crabs

Classification can be writ-
ten as a logic program

LTN

Regression on real
state dataset

Task-driven
reasoning

414 examples with 6 real-
numbered features

Regression can be written
as a logic program

LTN

Smokers-friends Knowledge
graph rea-
soning

14 friends 7 with smoking habits Satisfiability; Tractability LTN;
NMLM;
Tensorlog

Appendix A. First appendix 53

Nations, Kinship
and Unified Med-
ical Language
System (UMLS)

Knowledge
graph rea-
soning

Nation: 56 binary predicates, 14
entities, 2565 facts.
Kinship: 26 predicates, 104 en-
tities, 10686 facts.
UMLS: 49 predicates, 135 enti-
ties, 6525 facts

Multi-hop reasoning;
Satisfiability; Tractability

Neural LP;
NMLN;
NTP; Ten-
sorlog

Classification on
WebKB

Task-driven
reasoning

4100 webpages and 10000 hy-
perlinks

Satisfiability SBR

Wiki-Movies KB Knowledge
graph rea-
soning

196453 train examples of QA
pairs and 10000 test QA pairs.
43230 entities (constants) and 9
relations (predicates) [according
to neural lp]

Multi-hop reasoning; Sat-
isfiability

Neural LP

Freebase15K Knowledge
graph rea-
soning

483142 training examples and
50000 validations examples and
59071 test examples: 14951 en-
tities (constants), 1345 relation-
ships (predicates)

Multi-hop reasoning; Sat-
isfiability

Neural LP;
NMLN

Wordnet Knowledge
graph rea-
soning

141442 training, 5000 valida-
tion, 5000 testing examples
,40943 entities, 18 relationships

Multi-hop reasoning; Sat-
isfiability

Neural LP;
Tensor-
log;NMLN;

Wiki-Hop Knowledge
graph rea-
soning

43738 training prompts and
QAs, 5128 validation, 2451 test

KB combines natural lan-
guage with some FOL

NLProlog

Med-Hop Knowledge
graph rea-
soning on
KG

1620 training prompts and QAs,
342 validation, 546 tests

KB combines natural lan-
guage with some FOL

NLProlog

Sorting Arrays Task-driven
reasoning

Variable, can syntethize as many
arrays of variable size

Training with short arrays
must generalize to longer
arrays

NLM

Block’s World
Problem

Task-driven
reasoning

Variable, can add several rules
and entities to test scalability

Satisfiability, Tractability NLM

Family tree reason-
ing

Knowledge
graph rea-
soning

Variable, can add several rules
and entities to test scalability

Multi-hop reasoning; Sat-
isfiability

NLM; Dif-
fLog

Finding shortest-
path

Task-driven
reasoning

256 grid cells (entities), 2116
edges (relations)

Multi-hop reasoning; Sat-
isfiability

NLM ; Ten-
sorlog

Countries Knowledge
graph rea-
soning

272 entities (244 countries, 5
continents, 23 subregions), 1158
facts

Multi-hop reasoning; Sat-
isfiability

NTP

CORA citation-
matching task

Task-driven
reasoning

13K facts, 10 rules Satisfiability, tractability Tensorlog

ChEMBL
molecule database

Knowledge
graph rea-
soning

Variable given it’s a manually
curated dataset

Multi-hop reasoning; Sat-
isfiability

NMLN

* CLEVRER Dynamic
object-
centric
relational
and Coun-
terfactual
reasoning

20,000 synthetic videos of col-
liding objects and more than
300,000 questions and answers

VQA over counterfactual
events

NeSy-DR

* MNIST, FASH-
ION, and CIFAR-
10

semi-
supervised
classifica-
tion

Constrained learning SLM

* Prediction task
using PrefLib

Preference
learning

10 types of sushi for 5000 indi-
viduals

Constrained learning SLM

* Finding shortest-
path

Grid explo-
ration

4x4 grid to represent a graph
with uniform edge weights.
1600 examples

Constrained learning SLM

Appendix A. First appendix 54

Table A.2: Non-exaustive, detailed overview of datasets and models identified. Gen-
erally, satsifiability refers to the percentage of tasks solved with the correct answer,
such as identifying correctly a queried family relationship. Tractability is often measured
as the time it takes to complete the query given a larger size of the knowledge base
or a more complicated problem, for example the addition of new predicates in UMLS.
Datasets marked with a * either fall outside the scope of our taxomony as they are not
reasoning tasks which require the manipulation of logical predicates, rather learning
tasks where the symbolic component simply acts as hard constrains driving optimiza-
tion. We also add a * to the CLEVRER dataset since it mainly consists of videos rather
than images

Appendix A. First appendix 55

Training accuracy Validation accuracy Testing accuracy
ResNet18 1 0.972 ±0.003 0.662 ±0.002

Slot Attention + ResNet18 0.9286±0.002 0.922 ±0.003 0.831 ±0.014
Slot Attention + Set Transformer 0.984 ±0.003 0.985 ±0.003 0.8 ±0.021

Slot Attention + Forward Reasoner 0.915 ±0.082 0.911±0.088 0.915 ±0.084

Table A.3: Breakdown of classification accuracies of model architectures considered
obtained in the training, validation and testing sets of the ternary classification task
CLEVR-Hans3. For the αILP , we obtain the accuracies by averaging over the 3 ILP
tasks.

Annotated general framework of NeSy benchmarks

Figure A.1: General framework with pathways annotated indicating the most common
transformation from input to output modality.

Appendix B

Participants’ information sheet

If you had human participants, include key information that they were given in an
appendix, and point to it from the ethics declaration.

56

Appendix C

Participants’ consent form

If you had human participants, include information about how consent was gathered
in an appendix, and point to it from the ethics declaration. This information is often a

copy of a consent form.

57

	Introduction
	A brief history of Artificial Intelligence
	Neuro-Sybmolic AI

	Purely Symbolic and Deep Learning Models
	Symbolism
	Deep learning

	Unifying Framework over Neuro-Symbolic Models and Benchmarks
	Taxonomy of Neuro-Symbolic Models
	Unified Framework for Benchmarks

	Common Benchmark Suite Design
	SaSSY CLEVR Benchmark
	Object-centric reasoning
	Knowledge-Graph reasoning
	Task-driven reasoning
	Object-centric abstract reasoning
	Counter-factual reasoning

	Implications of Successful Completion of our Benchmark

	Experiments
	Methodology
	Models' Setups

	Results and Discussion
	Limitations and Future Prospects

	Conclusions
	Bibliography
	First appendix
	Survey of NeSy Models and Taxonomical Categorization
	Survey of Benchmarks and Associated Models

	Participants' information sheet
	Participants' consent form

