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Abstract
As a branch of Artificial Intelligence, Neuro-
Symbolic (NeSy) AI aims to create models ca-
pable of robust and parsimonious learning. In
our study, we expand on work by Stammer et al.
(2021) to test the robustness and parsimony of
traditional convolutional neural networks (CNN)
and Neuro-Symbolic (NeSy) architectures com-
prising a Slot Attention and a Set Transformer
component. We evaluate their robustness by
comparing their classification accuracy after fine-
tuning them to a modified version of the CLEVR-
Hans3 dataset containing four different kinds of
data complications. We find that models using
the Slot Attention maintained good classification
performance across data complications, indicat-
ing that the object-centric representations built by
this perceptual component are crucial for model
robustness. While a Slot Attention + ResNet18
architecture had the best overall performance, we
point out that Slot Attention + Set Transformer is
much more parsimonious since it achieves similar
results with 20 times fewer parameters.

1. Introduction
Convolutional neural networks (CNN) have led to break-
throughs in image classification tasks. However, they have
been recognised to present significant problems (Garcez &
Lamb, 2020).

Neural networks store the patterns learned from training
data in a distributed manner (Theodoridis, 2020). This is a
defining attribute of these models’ ability to learn countless
features in the data, but it also means that it is challenging
to chart out what concepts are being learned during train-
ing, and hence diagnose where learning "went wrong" if
the model does not behave as expected at test time. For
instance, deep neural networks have been documented to
be vulnerable to the presence of confounders in the task
of image classification. When a deep neural network is af-
fected by a confounder during training, it shows unexpected
behaviour in that it learns the wrong aspect of the data (see
Figure 1 for an example). The issue of confounders draws
attention to the general drawback of these models – low in-
terpretability: the decisions taken by deep learning models
are hard for humans to interpret and thus diagnose. Expla-
nation methods for deep learning often consist of mapping

Figure 1. Illustration of the effect of confounding on a traditional
CNN, for the task of digit classification. If by chance the training
data distribution is heavily skewed towards a colour for each digit,
colour acts as a confounder, since it induces the model to make an
unwarranted generalisation from digit colour to digit class. In this
case, a traditional CNN would learn to predict class ’9’ from the
colour ’purple’. As a result, at test time the model misclassifies
a purple 0 as a 9 with high confidence. In this case, the visual
explanation for CNN’s wrong prediction, based on a feature map,
is uninformative of the model’s behaviours. Figure extracted from
(Stammer et al., 2021).

importance estimates for a model’s prediction to the original
input space (Du et al., 2019). Nevertheless, low explainabil-
ity remains a central challenge for deep learning models
(Stammer et al., 2021).

The lack of parsimony has also been identified as a draw-
back of deep neural networks (Garcez & Lamb, 2020; Mar-
cus, 2020). These models are computationally expensive,
with standard architectures counting tens of millions of pa-
rameters, and often need very large amounts of high-quality
training data in order to effectively tune their parameters
and perform well with out-of-distribution data points.

Given these problems, NeSy AI seeks to integrate neural
and symbolic AI architectures, with the objective of accom-
plishing robust and parsimonious learning as well as sound
higher-level reasoning (Manhaeve et al., 2018; Garcez &
Lamb, 2020). One pathway to NeSy is represented by
the effort to integrate functional, task-specific, prior ex-
pert knowledge and inductive biases in the model, to make
learning more interpretable, computationally tractable and
parsimonious. For instance, humans are very successful
in object classification tasks, and they have been shown
to preferentially employ shape information (Kucker et al.,
2019) when solving these. Human shape biases can be
thought of as an innate toolkit that humans use to their
advantage to efficiently reduce the hypothesis space when
solving a task. Inspired by this, constraining learning for
vision models to reproduce these biases is thought to be



an effective way to improve their performance (Tuli et al.,
2021). Examples of prior knowledge compiled into a neural
network include the convolutional operators of a convolu-
tional neural network to handle the shift and translational
invariance of an image. Another well known inductive bias
is embedded in recurrent neural networks to handle input
sequences of variable length.

Tangent to the growing interest in this field, novel datasets
have been proposed over the years to chart out the poten-
tial of NeSy AI. One such benchmark is CLEVR, which
tests a model on the task of query-driven reasoning over
an image (Johnson et al., 2017). This diagnostic dataset
is thoroughly annotated as each image in the training and
validation set is paired with queries and answers, along
with scene graph annotations giving ground-truth locations,
attributes, and relationships for objects appearing in the
image. It is challenging in that multiple objects of different
colours, shapes, materials and sizes can appear in a scene in
varying positions and rotations, under different background
illumination. Given an input scene which consists of a
maximum of 10 such objects, a model is asked questions
such as "how many red spheres are there?" or "what is the
shape of the object next to the blue cube?". CLEVR-Hans
is a variant of CLEVR proposed by Stammer et al. (2021)
where each input scene is assigned a class label depending
on particular specifications. It elaborates on CLEVR in
order to test for generalisation under the presence of visual
confounders. To perform well on CLEVR-Hans, a model
has to be capable of disentangling concepts like shape from
colour in order to tolerate the presence of confounders. The
same authors also proposed a NeSy architecture which was
able to perform significantly better than a ResNet34 base-
line, arguing the advantages of the former encompassing
parsimony, explainability and ability to reason over a disen-
tangled representation of a CLEVR-Hans3 input image.

The contribution we make with this study is two-fold.
Firstly, we aim to expand on Stammer et al. (2021) and
further investigate the hypothesis that NeSy models offer
advantages over traditional, non-hybrid CNNs with respect
to parsimonious and robust learning when dealing with dif-
ferent kinds of real-life dataset complications. Particularly,
we test robustness under distribution shift: given a model
f that will be fine-tuned on the training set (x, y) ∼ D and
tested on a test set (x′, y′) ∼ D′ , D, we construct D to
ensure that (x, y) and (x′, y′) are drawn from different dis-
tributions. Robustness is then defined around the model’s
performance onD′ (Wang et al., 2021): a model f is more
robust than another model f ′ if f is more capable of main-
taining good test performance despite the complications
in the training data. Informally, a robust model can be
compared to a learner that has the essential capability of
disentangling the crucial concepts/patterns of the data, in
a way that a change of a confounding concept in the data
distribution affects learning only minimally.

Having established the extent to which Nesy models are
more robust and parsimonious learners, we wish to under-
stand what makes NeSy offer these advantages with certain

kinds of data complications. Is it the neural component,
the reasoning component or an interaction of the two? We
attempt to answer these questions by fine-tuning different
architectures consisting of exclusively CNN components
or a combination of CNN and reasoning components, and
comparing test accuracy on an image classification task for
the CLVER-Hans3 dataset under five complication condi-
tions: Confounder Generalisation, Noise, Class Imbalance,
Mislabelled Data and Small Training Data.

2. Motivation and Related Work
Stammer et al. (2021) compiled the CLEVR-Hans3 dataset,
a confounded visual scene dataset in which each scene
is classified based on specific combinations of object at-
tributes and relations between objects. They used a NeSy
model architecture, composed of a Slot Attention, which
during training produces a set of object-centric abstract
representations called slots; and a Set Transformer that per-
forms inference over these representations. They showed
that this architecture outperformed a ResNet-based CNN
despite having 40 times fewer parameters.

Our motivation is to expand on this finding as follows.
Firstly, we aim to test whether Stammer et al. (2021)’s
results can be generalised to the other kinds of real-life
data complications outlined below. Moreover, we run more
comprehensive experiments by considering models which
serve as intermediate variants transitioning from a full deep
learning approach, to a NeSy approach, which helps us
chart out the extent of the contribution of the neural and
reasoning components of the NeSy architecture.

2.1. Dataset and Task

We employ the CLEVR-Hans3 dataset to solve a ternary
image classification task. CLEVR-Hans3 is split into a
training, validation and testing partition consisting of 9000,
2250 and 2250 samples respectively. Class assignment is
evenly balanced in each split, e.g. in the training set, each
class is represented by 3000 images. A class 0 label is
assigned when an image contains at least a "large cube and
large cylinder", while class 1 images contain at least "a
small metal cube and small sphere" and in class 2 there is at
least "a large clue sphere and a small yellow sphere". These
classes are mutually exclusive and images were carefully
generated so as to ensure non-overlap. By default, CLEVR-
Hans3 tests a model’s robustness to generalise under visual
confounders, i.e., during training and validation, only im-
ages with large grey cubes and large cylinders are shown as
class 0, while during testing large cubes of varying colour
and large cylinders are labelled class 0, as exemplified in
Figure 2. If a model is confounded by the colours of the
objects in the training images, it will not be able to correctly
classify images containing objects with different colours
that appeared in the testing dataset.

We test the robustness of four different models (described
in Section 2.2) by modifying CLEVR-Hans3, separately
introducing four kinds of data complications. These are



Figure 2. Illustration of CLEVR-Hans3. Only Class 0 and 1 con-
tain a visual confounder enclosed in parentheses. For instance,
during the training and validation phases, only images with large
(grey) cubes and small metal spheres will be shown with their
respective class labels. During testing, however, the visual con-
founder is relaxed. For example, images of large cubes of varying
colours and small metal spheres will appear labelled as class 0
in the test data. In this paper, we subject CLEVR-Hans3 to four
additional complications: noise, class imbalance, small training
data and mislabels. Figure extracted from (Stammer et al., 2021)

listed here together with a short rationale for each:

• Noisy Data: We introduce noise to the training
data of CLEVR-Hans3 to simulate the complication
of poor-quality data used to train a deep learning
model. Imperfect and low-quality data being an om-
nipresent issue in the machine learning community
(Redman, 2018), which can be attributed to a plethora
of sources ranging from substandard measurement-
collecting devices (Beede et al., 2020), difficulties with
data-collection methods, or data "in the wild" being in-
herently noisy with a particular mention to healthcare
data (Zhou et al., 2020; Miotto et al., 2018).

• Class Imbalance: In simulating this complication in
our dataset, we are specifically inspired by the xBD
Dataset (Xia et al., 2019), which is used for classify-
ing damage severity in buildings pre- and post-natural
disaster from satellite imagery. This task is made even
more challenging by the data distribution being heav-
ily skewed: intact buildings are much more common
than damaged ones, due to catastrophic events being
statistically infrequent. It is therefore worth explor-
ing how our NeSy model performs amidst a heavily
skewed dataset.

• Small Training Data: We simulate this complication
because deep learning models are well-known to be

data-hungry, and sometimes require exponential in-
creases in data size (as well as the model size and
computational power) to observe increases in predic-
tion performance (Bahri et al., 2021; Kaplan et al.,
2020). However, readily available big data related to a
task at hand is often an unrealistic assumption. This
is owed to multiple factors including the nature of the
task itself such as the diagnosis of an extremely rare
neurological disorder like tuberous sclerosis complex
(Sánchez Fernández et al., 2020). The data annotation
process can itself be demanding in terms of requir-
ing domain-specific experts, and thus be very costly
and not manageable at large scales (Brigato & Ioc-
chi, 2021). Further motivation stems from Mao et al.
(2019), who reported that by holding out 90% of the
training data of the CLEVR dataset to train their NeSy
model for query-answering, they were still able to
defeat their CNN counterparts.

• Mislabels: The final condition we want to explore is
the presence of mislabels during training. We motivate
this condition by highlighting that supervised learning
models are also over-reliant on the human annotators
supplying the dataset (Biderman & Scheirer, 2020).
However, annotation tasks can be tedious, leading to
humans making mistakes during labelling, as well as
subjective, which renders inter-annotator agreement
challenging. Empirical studies consistently show that
mislabels are particularly harmful to deep neural net-
works (Karimi et al., 2020).

2.2. Models

We proceed to explain how Stammer et al. (2021)’s NeSy
model is assembled and subsequently which models we
considered in our experiments. In their original paper, the
NeSy model consists of a Slot Attention (Locatello et al.,
2020) acting as a perception module, and a Set Transformer
acting as a reasoning module (Figure 4). The Slot Atten-
tion is pre-trained (see Appendix - Section A) on CLEVR’s
scene graph annotations to compute an object-centric rep-
resentation of an image, which is a tensor of unnormalised
probabilities Z ∈ RB×O×D, where B is the batch size, O = 10
is the maximum amount of objects identified in the image,
and D = 19 corresponds to the number of attributes that
describe each object. These attributes can fall within 5
categories, indexed as follows: D0:3 = 3D coordinates and
presence of the object, D4:6 = 3 possible shapes (sphere,
cube, cylinder), D7:8 = 2 sizes (large, small), D9:10 = 2
materials (rubber, metal) and D11:18 = 8 colours (cyan, blue,
yellow, purple, red, green, grey and brown). A single slot
represents an object identified in the image, and the as-
sociated 19-dimensional vector refers to an unnormalised
probability distribution over the attributes of this object.
The output of the Slot Attention is binarised by taking the
argmax of the value of each category, ignoring the first 4
indices corresponding to the position and presence of the
object. This binarised Z ∈ RB×O×D tensor is processed by
the Set Transformer, the reasoning component. This Set
Transformer is an attention-based, encoder-decoder neural



network which maps a set of vectors to a single vector,
assuming permutation symmetry in the input (Lee et al.,
2019). In the context of solving CLEVR-Hans3, the input
vectors refer to the output of the slot by the Slot Atten-
tion, which is then mapped to an output vector representing
the probability distribution over the 3 classes. Specifically,
during training, the Set Transformer learns through its at-
tention mechanism which attributes of the slots are the most
relevant when deciding what is the most likely class label
for an image. This process of sorting out which attributes
to attend to in order to derive the class label is what is
referred to as "reasoning" in their paper.1 Therefore, the
assembly of this neural Slot Attention and reasoning Set
Transformer is referred to as a NeSy architecture, inheriting
the inductive biases and functional properties present in
both components, allowing efficient cooperation for solv-
ing CLEVR-Hans3. These inductive biases refer to object
localisation and object attribute decomposition by the Slot
Attention, along with classification task-driven attribute
selection by the Set Transformer.

Altogether, this hybrid architecture consists of around 540K
parameters, out of which only 158K belonging to the Set
Transformer are tunable during training. The Set Trans-
former learns which attributes of the slots are the most
relevant to reason over in order to classify the image. The
remaining parameters from the Slot Attention are fixed (see
Table 1).

We mainly build upon Stammer et al. (2021)’s work on
contrasting the performances of a canonical CNN archi-
tecture, a ResNet pre-trained on ImageNet, with that of
the NeSy model. Both are trained, validated and tested
on CLEVR-Hans3 with real-life complications imputed.
Additionally, in order to build more comprehensive exper-
iments with respect to Stammer et al. (2021), we tested 2
new model variants which serve as intermediate models
within the spectrum from pure deep learning to full neuro-
symbolic modelling. This is because in their original work,
we note unfairness in model comparison given that their
ResNet34, whilst also pre-trained like the Slot Attention
and having 40 times as many parameters, looked at an es-
sentially different dataset, ImageNet. Its NeSy counterpart,
on the other hand, was trained on CLEVR’s scene annota-
tions. From this comparison also stems a series of questions
such as whether the inductive biases of the NeSy’s Slot At-
tention or Set Transformer are irreplaceable, or whether
either component can be substituted with fully-connected
(FC) convolutional layers which are not designed for object
attribute decomposition (perception) or attribute selection
(reasoning) when solving CLEVR-Hans3. In order to fully
understand what is the module that offers the NeSy ar-
chitecture a good performance over CLEVR-Hans3 with
real-life complications with respect to its pure deep learning
counterpart, we thereby consider the following new model
variants:

1While we are aware of the contentious use of the word "rea-
soning" in the deep learning community, we note that terminology
disagreement is not the focus of our work.

• Perceptual CNN (FC layers + Set Transformer):
We propose a ResNet acting as the perception module
coupled with a Set Transformer which would help us
identify whether the FC convolutional network can
replace the Slot Attention in learning how to provide
an object-centric representation of an input image to
the reasoning component in order to derive the correct
class label.

• Reasoning CNN (Slot Attention + FC layers): We
also propose a Slot Attention coupled with a ResNet
acting as the reasoning component. This would help
us sort out whether, despite lacking the inductive bias
of the attention mechanism, the FC convolutional net-
work can learn how to reason over the Slot Attention’s
object-centric representation.

These model variants would help us smooth the leap from
pure deep learning to full NeSy modelling, enabling a more
comprehensive, controlled comparison between both. Our
results would also help us identify which is the dominant
module (neural vs. reasoning), or whether the combination
of both is responsible for robustly solving CLEVR-Hans3.

3. Methodology
We now proceed to outline how we designed the experi-
mental conditions by modifying the CLEVR-Hans3 dataset,
as well as how we assembled and tested the four model
variants. Regarding the dataset with complications, we note
that our base experimental condition is the original CLEVR-
Hans3, which by default tests for generalisation under a
visual confounder (colour). The remaining experimental
conditions (noise, class imbalance, small data and misla-
bels) are independent of one another, but are built upon the
base condition. We also only modify the training partition,
whilst leaving the validation and test set unchanged. All
images are down-scaled to visual dimensions 128 x 128
and normalised to have pixel values between -1 and 1 when
fed to the model variants.

3.1. Complication Simulation

1. Noise: We add noise to the training partition of
CLEVR-Hans3 by randomly selecting a third of the
images from each class and subjecting them to Gaus-
sian multiplicative noise. This consists of multiplying
all the pixels of each image by a value sampled from
a uniform distribution between 0 and 1 (see Figure 3).

2. Class 1 Skewness: We simulate this complication by
creating a training dataset which includes 1/3 of the
images from class 1 (which is the class containing the
visual confounder). Therefore, the new dataset totalled
7000 images. The class 1 images to be included were
selected randomly.

3. Overall Small Data: We create a new dataset by
randomly selecting 1/3 of the images for each class,
decreasing the training data size to 3000 samples.



4. Mislabels: We randomly select 1/3 of the images
of each class, and change the labels systematically by
adding 1 and taking modulo 3. For example, the 1000
images originally belonging to class 2 will now be
mislabeled as class 0.

Figure 3. Sample of a class 0 CLEVR-Hans3 image with multi-
plicative noise added.

3.2. Model Assembly

We assembled our model variants as follows:

1. Pure ResNet18: We employed ResNet18 as our base-
line. We opted for this smaller version in contrast to
Stammer et al. (2021)’s ResNet34 for computational
convenience during training. We load it pre-trained on
ImageNet and cut off its output layer of 1000 nodes to
replace it with a linear one over 3 classes before train-
ing it on CLEVR-Hans3. We note that despite having
half the size of ResNet34, we are still able to closely
replicate Stammer et al. (2021)’s results as Table 2
shows.

2. Perceptual ResNet18 (FC layers + Set Trans-
former): We employ ResNet-18 pre-trained on Ima-
geNet as our FC layers to allow for a more controlled
comparison amongst variants. This time, to couple
the ResNet18 with the reasoning module (Set Trans-
former), we resized its last layer to output a O × D
matrix, which is the same dimension as that given by
the Slot Attention. All parameters are differentiable.
Because ResNet18 is attempting to replace the Slot
Attention as the perception module, we refer to this
model variant as Perceptual ResNet18.

3. Reasoning ResNet18 (Slot Attention + FC layers):
We assemble the Slot Attention pre-trained on CLEVR
and a ResNet18 pre-trained on ImageNet for our FC
layers, again aiming for a more controlled comparison.
To link them together, the object-centric representa-
tion output by the Slot Attention is given as an input
to the ResNet18. Here, the ResNet18 replaces the
Set Transformer and acts as the “reasoning” module.
Because the Slot Attention output is tridimensional
B × O × D, lacking the dimension for channels, we
concatenate three replicas of this object-centric repre-
sentation to obtain B × 3 × O × D matrix that can be

fed to the ResNet18. Following the specifications of
Stammer et al. (2021), we keep the parameters of the
Slot Attention fixed in this variant (Table 1).

4. Concept Learner (Slot Attention + Set Trans-
former): Our variant for full NeSy modelling would
be the same one described in Section 2

Figure 4. NeSy Pipeline. The Slot Attention works by encoding
an input image into a tensor which is an object-centric representa-
tion of it. For example, given an image, it would output a matrix
(or tensor where the batch size is 1) of size O × D. We set O = 10
as that is the maximum amount of objects appearing in a scene,
and D = 19 represents the task-dependent attributes. These slots
are permutation symmetrical, i.e., it does not assume that objects
identified in an image appear in any particular order. The Set
Transformer works by taking this set of vectors and mapping it
to a probability distribution of being assigned a particular class.
The original NeSy model also had a visual and semantic explainer
which were ignored in this paper out of concerns for fairness in
model comparison, e.g., our model variant ResNet + Set Trans-
former is unable to produce sound saliency maps since ResNet
is unable to contribute with a disentangled representation of a
CLEVR-Hans3 scene unlike the Slot Attention. Figure cropped
from (Stammer et al., 2021).

4. Experiments and Discussion
According to our motivation presented in Section 2, we
designed a series of comprehensive experiments to explore
two questions. The first one is whether the Concept Learner
architecture is still more robust than pure ResNet architec-
ture when facing real-life complications on training data. If
yes, our second question will be whether the slot attention,
set transformer or the combination of both plays a more
important role.

Our implementations followed and extended the work of
Stammer et al. 2021.2 Since we have five training datasets
with different real-life complications (Section 2.1) and four
model architectures (Section 3), there are twenty (4× 5) ex-
periments in total. We trained them by minimizing the cross-
entropy loss with the same hyperparameter configuration:
50 training epochs, a learning rate of 1e−4, the batch size
of 128,3 Adam optimizer β1 = 0.9, β2 = 0.999, ϵ = 1e−8

and zero weight decay. Models including the Slot Attention
have three more hyperparameters set: 10 slots, 3 iterations
per slot attention, and 19 attributes. For variants where
either the Slot Attention or Set Transformer is used, the

2Stammer et al. 2021’s repository: NeSyXIL.
3We mostly recreated Stammer et al. (2021)’s hyperparameter

setting, except that they train their ResNet34 for 100 epochs with
a batch size of 64

https://github.com/ml-research/NeSyXIL


learning rate decays as per a cosine annealing scheduler
until a minimum of 1e−6. Note that for the Reasoning
ResNet18 and the Concept Learner models, only a por-
tion of the parameters is trained (Table 1). In addition, to
quantify the uncertainty of our models’ performances, each
experimental condition for each model was run five times
using random seeds: 0, 5, 25, 42 and 88. Then we used the
same validation (confounded by colour) and test datasets
(non-confounded) to evaluate each model’s performance.

Table 1 shows the information of each model architec-
ture, highlighting the parsimony of the Concept Learner
since it has exponentially fewer parameters than its coun-
terparts.4 Each complication condition is built upon the
original CLEVR-Hans3, which is confounded by colour.
Therefore, if a model is not trained on the base condition,
we assume the upper bound of its performance will be the
corresponding classification accuracy achieved on the base
condition. Before running our experiments, we first repro-
duced the results from Stammer et al. 2021, comparing a
ResNet model and Concept Learner trained and tested on
the confounder condition. Table 2 shows our reproduced
results, which indicates that we achieved similar perfor-
mance with our ResNet18 and nearly the same performance
for the Concept Learner. This reproduction validates our
subsequent experiments.

Model Architecture Name Number of Parameters
Slot Attention ResNet18 Set Transformer Overall Trainable

✓ Pure ResNet18 11.2M 11.2M
✓ ✓ Perceptual ResNet18 11.4M 11.4M

✓ ✓ Reasoning ResNet18 11.6M 11.2M
✓ ✓ Concept Learner 539K 158K

Table 1. Information on model architectures, including alias and
the number of parameters. We highlight that the full NeSy archi-
tecture is the most parsimonious in terms of model size.

Pure ResNet Concept Learner
Val Acc Test Acc Val Acc Test Acc

Stammer et al. 2021 0.996±0.001 0.703±0.003 0.986±0.003 0.817±0.031
Reproduction 0.971±0.003 0.662±0.004 0.980±0.006 0.804±0.026

Table 2. Validation and test accuracy comparison between the
results provided by Stammer et al. 2021 and our reproduction.
Stammer et al. 2021 uses ResNet34 while our reproduction uses
ResNet18 for the purpose of computational convenience.

Figure 5 shows all our experiment results. For each com-
plication condition, the model that achieves the highest test
accuracy is considered the most robust model w.r.t that con-
dition. The full results can be found in Table 3. Across
data complication conditions, the test accuracy of Reason-
ing ResNet18 and Concept Learner is always higher than
Pure ResNet18 and Perceptual ResNet18. This shows that
architectures employing Slot Attention always outperform
architectures lacking it. This is mainly owed to the Slot
Attention’s ability to output an object-centric representation
that is informative for the reasoning component to identify
the correct label. In contrast, the Perceptual ResNet gener-
ally performs poorly because the reasoning module can not
learn to pick the right attributes since the ResNet does not

4All parameters of ResNet with/without Set Transformer are
trainable, while parameters of Slot Attention can not be trained.

have inductive biases for object localisation and object at-
tribute decomposition. In other words, the ResNet’s output
representation is not interpreted effectively by the Set Trans-
former. In addition, as Table 3 shows, the baseline (pure
ResNet18) nearly always shows ceiling performance on
training data, but systematically displays the worst test ac-
curacy, meaning it is most affected by the visual confounder
and the different data complications.

Our results show that the Reasoning ResNet18 is the most
robust architecture for confounder, noisy data and mislabel
complications, while the Concept Learner is the most robust
architecture for class imbalance and small training data
complications. We proceed to dive into discussing each:

4.1. Noise

The results obtained from the noisy data complication
closely match that of the base condition, accounting for
variance. Our results in this condition only suggest that
slight perturbations of the training data do not affect each
model’s performance when being evaluated on clean testing
data. In future work, we can explore adding more disrup-
tive noise in order to observe different results. This could
be in terms of sampling noise values from a high-variance
distribution or imputing adversarial noise attacks.

4.2. Class 1 Skewness

We observe a drop in the performance of architectures lack-
ing the Slot Attention. We argue that this indicates that
these models can not disentangle the attributes of the ob-
jects present in the training image, thus making them vulner-
able to class skewness, since there are fewer sample images
from which they can generalise. This highlights how the
Slot Transformer’s ability to output an object-centric repre-
sentation is helpful in building a robust classifier in case of
facing an imbalanced training distribution. We argue that
this object-centric representation facilitates the training of
the reasoning component of the model as the latter only
has to identify which attributes are the most relevant when
deciding a class label, thus tolerating less amount of data
for a particular class. The Concept Learner only performs
marginally better than the Reasoning Resnet18, suggesting
that the ResNet can perhaps reason over the attributes out-
put by the Slot Attention. However, if we account for the
number of parameters, the Concept Learner’s higher perfor-
mance, although marginal, highlights one of the strengths
of NeSy AI: being parsimonious and not data-hungry.

4.3. Small Training Data

Our results on holding out an overall 2/3 of the training
data yield performance measures closely resembling the
patterns of the results to Section 4.2. It is not surprising that
both the Pure ResNet18 and Perceptual ResNet18 perform
worse than their base condition counterparts as they have
seen fewer data during training. Consequently, they are
even less able to disentangle the confounder and generalise
robustly when compared with their counterparts which have



Figure 5. Visualisation of test accuracy for four model architectures (Section 3) building on five training datasets (Section 2.1), each
model is trained five times with different seeds on 5 complication conditions, where confounder is the basis for the rest of complications.
Points represent the mean test accuracy and the bars represent their standard deviations.

Model Architecture Confounder (Base Condition) Noise (1/3) Skew (1/3 of Class 1) Small (1/3) Mislabel (1/3)
Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc

Pure ResNet18 1±0 0.971±0.003 0.662±0.004 1±0 0.968±0.003 0.656±0.005 1±0 0.954±0.004 0.651±0.007 1±0 0.947±0.013 0.648±0.01 1±0 0.819±0.03 0.575±0.011
Perceptual ResNet1 1±0 0.968±0.005 0.68±0.007 1±0 0.96±0.004 0.673±0.005 0.957±0.055 0.894±0.043 0.619±0.022 0.986±0.015 0.868±0.007 0.621±0.008 0.809±0.067 0.833±0.017 0.588±0.014
Reasoning ResNet1 0.928±0.003 0.925±0.005 0.841±0.005 0.925±0.003 0.927±0.007 0.833±0.004 0.882±0.005 0.865±0.002 0.775±0.007 0.807±0.004 0.79±0.008 0.689±0.008 0.733±0.004 0.873±0.007 0.763±0.013
Concept Learner 0.984±0.004 0.98±0.006 0.804±0.026 0.983±0.002 0.98±0.005 0.794±0.013 0.977±0.005 0.973±0.004 0.776±0.022 0.968±0.005 0.962±0.006 0.716±0.029 0.784±0.005 0.958±0.003 0.675±0.008

Table 3. Experiments results for four model architectures (Section 3) building on five training complications datasets (Section 2.1), where
bold results represent the highest test accuracy (i.e., the most robust architecture) on certain real-life data complications.

the Slot Attention. Due to the Pure ResNet18 failing to act
as a replacement for the Slot Attention in decomposing the
image into an object-centric representation, the Perceptual
ResNet18 can be thought of as simply a larger ResNet18.
Despite having all parameters differentiable, the ResNet18
only has the inductive bias of handling shift and transla-
tional invariance in the input image (Uang et al., 1994). It
lacks the ability of object-localisation amongst multiple co-
appearing objects and attribute decomposition like the Slot
Attention. Therefore, its parameters can not be adjusted in a
way that helps it build better object-centric representations.

The best overall performance on the test set is achieved by
the Concept Learner, albeit marginally better compared to
the Reasoning ResNet18. This is consistent with previous
findings by (Mao et al., 2019) where their NeSy model
could achieve state-of-the-art performance on CLEVR de-
spite holding out 90% of the training data.

4.4. Mislabels

The results obtained in this complication condition are
perhaps the most interesting to discuss as they allow us
to substantiate the claims that the Set Transformer is per-
forming reasoning over the Slot Attention’s object-centric
representation, while the Reasoning ResNet18 is only iden-
tifying statistical correlations between the Slot Attention’s
attributes and labels.

Firstly, we observe the largest drop in performance for vari-
ants which do not employ the Slot Attention, with respect
to their corresponding base experimental condition. It is
no surprise that in addition to the weaknesses of these 2
variants discussed previously, for each class there were 1/3
of the images which contained features inconsistent with
the labelling guideline of CLEVR-Hans3, which could have
further confused both variants.

Secondly, the mislabel complication condition is also one
where the Concept Learner performs significantly worse
than the Reasoning ResNet18 on the test set. Higher train-
ing accuracy as shown in Table 3 in this condition however
suggests that the Concept Learner has managed to reason
over the attributes. Nonetheless, because 1/3 of the images
per class had been mislabelled, its reasoning component
has perhaps learned that class assignments can overlap. For
example, the Set Transformer may have confused that class
1 images could correspond to images with EITHER "a small
metal cube and small (metal) sphere" according to 2000
images OR "a large blue sphere and small yellow sphere"
according to 1000 mislabeled images. In this particular
case, when the Concept Learner is evaluated on the test
set it performs poorly because there are no mislabels and
class assignment is mutually exclusive, so it is likely to
misassign a test image believing it is fulfilling the EITHER
OR condition. We argue that this most likely sheds light on
why the Reasoning ResNet18 can perform better than the
Concept Learner in the test set: Reasoning ResNet18 has



probably only captured the correlation between the most
common features, facilitated by the Slot Attention, with
their most common labels, as denoted by 2/3 of the cor-
rectly labelled images. Because “reasoning over attributes”
is not just a statistical matter of capturing the most frequent
co-occurrences between input features and output labels,
we argue that the mislabel complication condition serves as
evidence that the Reasoning ResNet18 is not performing the
same kind of reasoning the Concept Learner does. Rather,
the Reasoning ResNet18 is matching frequent attributes to
corresponding frequent class labels. This argument also
applies to the Class Skewness and Small Training Data
complications, explaining why the Reasoning ResNet18’s
training accuracies are significantly lower compared to that
of the Concept Learner (see Table 3): for this architecture
there is just not enough sample images of either one class
or all classes to associate the most common label. In con-
trast, for the Concept Learner, learning which images are
assigned to a particular class is not a matter of statistical
correlation, but rather identifying which attributes of the
Slot Attention it should pay attention to derive the class
label.

Furthermore, performing well on this complication condi-
tion is not necessarily a good sign because the systemati-
cally placed mislabels make the training data images easily
ambiguous. Thus, a reasoner which performs poorly could
be understood as showing that it is “paying attention” to
the right attributes.

4.5. Overall

Given the above results, our research questions can be an-
swered as follows. For all real-life training data compli-
cations proposed, the Concept Learner architecture is al-
ways more robust than Pure ResNet18 architecture. When
comparing the importance of Slot Attention and Set Trans-
former, the former is essential for object-centric represen-
tation while the latter can be replaced by FC layers (e.g.,
ResNet18). However, an important take-away from these
experiments is that ResNet18 is less parsimonious than the
Set Transformer as a ‘reasoning module’, and this is despite
it being pre-trained on ImageNet, thus greatly outweighing
the Set Transformer in terms of the amount of supervision
and size. Furthermore, it is open to debate whether FC
layers can perform reasoning as the Set Transformer does,
rather than just identifying statistical correlations, as evi-
denced by the mislabel condition. Considering the number
of parameters, computational efficiency or dataset size, then
the Slot Attention coupled + Set Transformer architecture
is arguably more suitable for this task. Besides, another
takeaway of our experiments is that NeSy AI is particu-
larly attractive in how it decomposes a problem in order
to solve it. In the CLEVR-Hans3 classification task, it
first tries to find a disentangled representation of an image
and then assigns a class label based on this representation.
This is in contrast with the traditional approach taken by
pure deep learning which seeks to map an input image di-
rectly to a label, leaving the intermediate representation

as a black-box. We thus argue that inductive biases such
as object localisation and object attribute decomposition
from the Slot Attention, coupled with attribute selection
through attention by the Set Transformer, complement each
other harmoniously and efficiently in a hybrid architecture
in order to robustly solve this task, compared to alternative
approaches.

5. Conclusions
One of the main traits of NeSy AI is the compilation of prior
knowledge into neural architectures to constrain learning,
helping build robust classifiers. For example, Slot Atten-
tion’s inductive bias of object localisation and attribute
decomposition is useful in obtaining an informative repre-
sentation of the input space for a subsequent reasoner to
process it and solve a task. Such integration helps build
more parsimonious models which are not data-hungry, and
are robust to possible complications appearing in the train-
ing distribution.

Our results corroborate the growing literature exploring the
strengths of NeSy modelling. Specifically, the experiments
we run show that NeSy modelling helps build parsimonious
classifiers that are robust to noisy, heavily skewed and small
training data. Our NeSy model, however, is vulnerable to
mislabels in the dataset, which we argue is not necessarily a
drawback, because it exposes possible pathological features
of a training dataset.

Additionally, we recall that one of the main motivation be-
hind our work is to assess whether NeSy AI can tolerate
data complications inspired by real-life datasets like health-
care ones. This is partly due to the research on NeSy AI
mainly limited to laboratory conditions. Our results drive
us to believe that NeSy AI holds great, untapped potential
for solving real-life tasks such as disaster or disease classifi-
cation, where it can highlight its strengths of parsimonious
modelling through constrained learning, and incorporating
human prior knowledge. Another interesting future direc-
tion is to explore NeSy architectures which do not assume
a pre-trained Slot Attention, but rather train it from scratch
with backpropagated training signal from the reasoning
module. Training DeepProbLog (Manhaeve et al., 2018) to
solve CLEVR-Hans3 represents one such example. There,
the user only has to specify a probabilistic logic program
and assemble neural networks which learn to predict the
probabilities of the logic predicates in the program. The
networks do not require to be pre-trained using CLEVR
scene graph annotations.
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A. Pre-training of the Slot Attention
The Slot Attention (see Locatello et al., 2020) works by first
encoding an input image into N input features using con-
volutional layers augmented with positional embeddings.
These input features are mapped to a set of K slots, each slot
being a vector of probabilities of dimension D. The objec-
tive of Slot Attention is to train its parameters so that slots
learn to identify which objects are in an image and what are
its attributes. During training, at each iteration, slots "com-
pete" for explaining parts of the input via a softmax-based
attention mechanism and update their representation using
a recurrent update function. The goodness of the prediction
of the Slot Attention is measured via the Hungarian Loss
(see (Carion et al., 2020), which is traditionally used as an
optimisation objective in object detection tasks regarding
the prediction of coordinates of bounding boxes.

Stammer et al. (2021) pre-train the Slot Attention on
CLEVR scene graph annotation with a cosine annealing
learning rate scheduler for 2000 epochs, minimum learning
rate of 1e−5, initial learning rate 4e−4, batch size of 512,
10 slots, 3 internal slot-attention iterations and the Adam
optimizer with β1 = 0.9, β2 = 0.999, ϵ = 1e−8 and zero
weight decay.
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