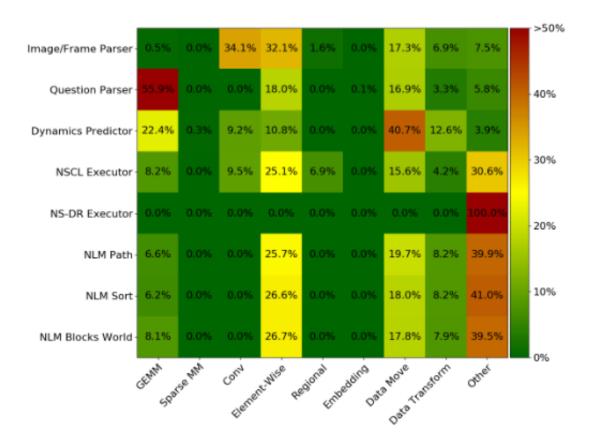
Neuro-Symbolic Al: An Emerging Class of Al Workloads and their Characterization

by Zachary Susskind, Bryce Arden, Lizy K. John, Patrick Stockton, Eugene B. John



Outline

Preliminaries

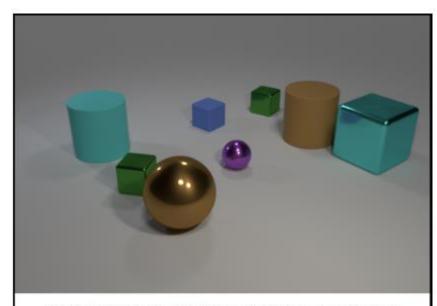
- CLEVRER; Forward Chaining
- Model and Data Parallelism

Introduction and Motivation

Methodology

Results and Conclusion

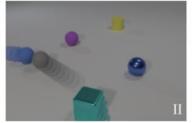
Preliminaries (models)



How many yellow matte cylinders are there?

What shape is the matte object that is the same color as the large metal sphere?

Are there more rubber things that are on the right side of the big sphere than cyan shiny cubes?



Descriptive:

- Q: How many spheres are moving? A: 2
- Q: What shape is the second object to collide with the gray object? A: Cube
- Q: Are there any collisions after the cube enters the scene?

A: Yes

Explanatory:

- Q: Which of the following is responsible Q: What will happen next? for the collision between the gray object and the cube?
- a) The presence of the purple object
- b) The collision between the blue sphere and the gray sphere
- c) The presence of the purple object
- d) The presence of the blue object

A: b), d)

Predictive:

- a) The cube and the gray object collide b) The gray sphere collides with the purple sphere
- c) The metal sphere and the cube collide
- d) The gray sphere collides with the blue sphere

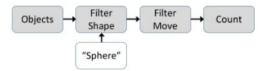
A: b)

Counterfactual:

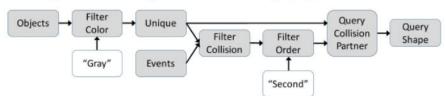
- Q: What will happen if the gray sphere is removed?
- a) The blue sphere collides with the cube b) The blue sphere and the metal sphere collide
- c) The purple object collides with the
- d) The cube and the metal sphere collide

A: a), d)

How many spheres are moving?



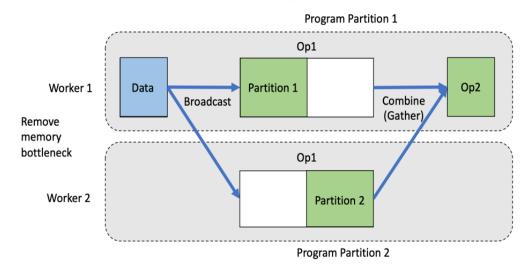
What shape is the second object to collide with the gray object?

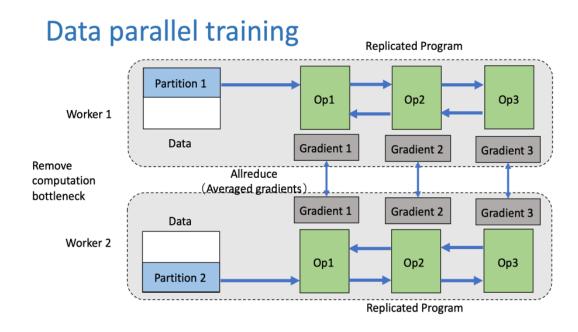


friendof(pedro, tom). likes(X,Y) :- friendof(X, Y).

Preliminaries II (analysis)

Model parallel training: Intra-operator





Introduction

Model	Submodules	Task	Dataset
NSCL by IBM/MIT	 Image Parser (Mask R-CNN) Question Parser (Open NMT) Symbolic Executor 	Query-driven Relational reasoning over images	CLEVR
NS-DR by IBM/MIT	 Video Frame Parser (Mask R-CNN) Question Parser (Open NMT) Dynamics Predictor (Learned physics by PropNet) Symbolic Executor 	Query-driven relational reasoning over video	CLEVRER
NLM by Google	No Submodels	Program-driven reasoning	Sort, Family tree, and Block's world

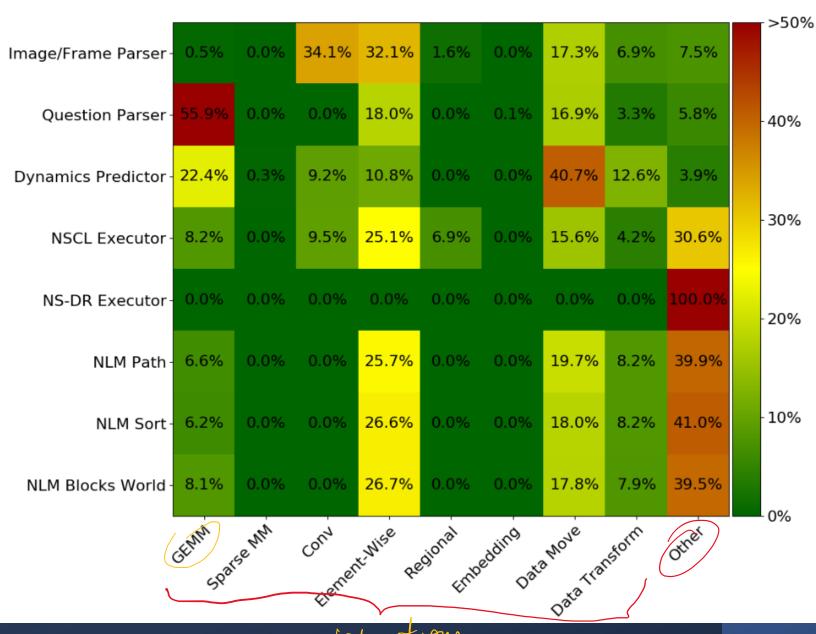
Motivation of function profiling

Identify potential parallelism

Identify bottlenecks to optimize

Function profiling based on runtime

Workload	Examples	Comments
Dense matrix multiplication		Highly parallelizable unless one matrix's dimension is small.
Sparse matrix multiplication		Look-up for non-zero values
Convolution		Theoretically parallelizable, but practically challenging. Use im2col algorithm to convert convolution into a GeMM, but need a lot of data movement
Element wise tensor	Activation function, normalization	
Regional operations	Pooling	
Embedding lookup	One-hot to embedding	Parallelization is challenging: training != testing (look-up table)
Data movement	Tensor duplication, host-device transfer or tensor assignment	
Data transformation	Transpose, tensor reordering, coalescing	



Note:

> inference

- single input

Operations

TABLE III
RUNTIMES AND RUNTIME BREAKDOWNS FOR SINGLE INPUTS TO THE MODELS DISCUSSED IN THIS PAPER.

Model	GEMM	Sparse MM	Conv	Element-Wise	Regional	Embedding	Data Move	Data Transform	Other	Total
Image/Frame Parser	0.19ms	0ms	11.8ms	11.1ms	0.54ms	0ms	6.0ms	2.4ms	2.6ms	34.6ms
Question Parser	166ms	0ms	0ms	53.5ms	0ms	0.27ms	50.1ms	9.9ms	17.3ms	297ms
Dynamics Predictor	715ms	9.9ms	294ms	345ms	0ms	0ms	T300ms	403ms	125ms	3200ms
NSCL Executor	39.9us	Ous	46.4us	122.4us	33.5us	0.0us	76.0us	20.5us	149.5us	488.3us
NS-DR Executor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12.9ms*	12.9ms
NLM Path	1.2s	0s	0s	4.7s	0s	0s	3.6s	1.5s	7.3s	18.3s
NLM Sort	2.6s	Os	0s	11.1s	0s	0s	7.5s	3.4s	17.1s	41.7s
NLM Blocks World	635ms	0ms	0ms	2100ms	0ms	0ms	1400ms	618ms	3100ms	7850ms

garbage collection

Results and Conclusion

Question parser's computational time depends on input sequence's length \$22 was

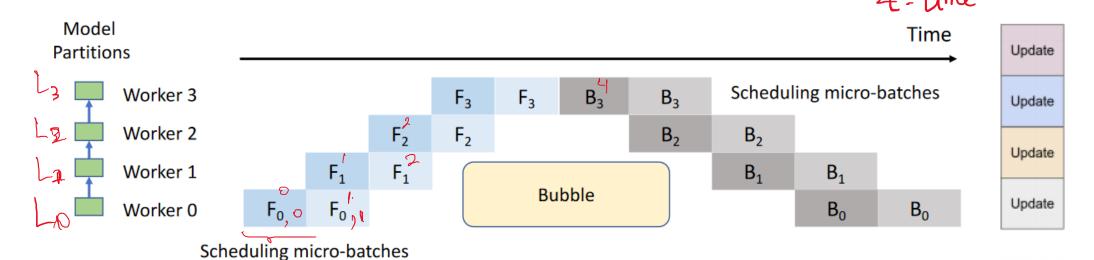
Dynamics predictor could be faster by optimizing coalescing.

Symbolic program executors have small parallelization opportunities

NLM also pose challenges for parallelization due to low operational intensity

Pipeline parallelism 1.01

Optimising micro-batch size



- Small micro-batch reduces bubble size; but incur large micro-batch scheduling overheads
- Large micro-batch incurs large bubble; but come with small micro-batch scheduling overheads
- Optimal micro-batch size must balance bubble size and scheduling overheads

Slide taken from Luo, Mai Fundamentals of Distributed Machine Learning (2022)