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Paradigm shift

1. What, Where?

Data-driven -> task-driven vision

- 3D reconstruction

2. How and Why?

Visual commonsense:

- Functionality,

Physics,

- Intentionality,

. Causality,

Utility

Benefits:

Small sample learning

Generalization through reusable schemas
Bidirectional, continual inference
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Perceptual causality

- We perceive/reconstruct the causal history of input stimuli




Experimental evidence
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Counterfactual perception

. Causal model of the world, or scaffolding?

Description Explanation

How did ball B go through the goal? Did ball A cause ball B to go through the goal?

Gerstenberg et al., 2017



Causal And-Or Graph
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Figure 14: An example of perceptual causality in computer vision [155], with a causal and-or graph for door status, light status, and screen status. Action A

represents non-action (a lack of state-changing agent action). Non-action is also used to explain the change of the monitor status to off when the screensaver
activates. Arrows point from causes to effects, and undirected lines show deterministic definition. m O d e | a n d

observed stats



Intuitive Physics

+ Physics engine in the mind

| B

(a) Will it fall? (b) In which direction? (c) Which is more likely to fall if the table was
bumped hard enough, the yellow or the red?

Figure 15: Sample tasks of dynamic scene inferences about physics, stability, and support relationships presented in Ref. [70]: Across a variety of tasks, the intuitive
physics engine accounted well for diverse physical judgments in novel scenes, even in the presence of varying object properties and unknown external forces that
could perturb the environment. This finding supports the hypothesis that human judgment of physics can be viewed as a form of probabilistic inference over the
principles of Newtonian mechanics.
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(a) (b) (©) (d)

Figure 23: (a) Top three poses in various scenes for affordance (sitting) recog-
nition. The zoom-in shows views of the (b) best, (c) second-best, and (d) third-
best choice of sitting poses. The top two rows are canonical scenarios, the
middle row is a cluttered scenario, and the bottom two rows are novel scenar-
ios that demonstrated significant generalization and transfer capability. Repro-
duced from Ref. [233] with permission of the authors, (©) 2016.

Figure 25: An example of a synthesized human-centric indoor scene (a bed-
room) with an affordance heat map generated by Refs. [99, 288]. The joint
sampling of the scene was achieved by alternatively sampling humans and ob-
jects according (o a joint probability distribution.




Heider-Simmel experiment



Perceptual intentionality

- Assume agent follows “rationality principle”:

. 1) Devote time & resources that change fluents according to intentions

. 2) Achieve intentions optimally given beliefs of the world



Learning utility

- Principle of maximum expected utility



Limitations

- So far only discussed what a single model should achieve, not a
social system of models

- Language, communication and morality
- No in-depth discussion of abstract reasoning

» Physically realistic VR/MR Platform: Big Data for Big Tasks



Discussion

- Knowledge representation

latent space representation :~ initiate(climb).[-1@11).
:~ danger, initiate(observe),
on(agent,platform). [-1@10].

:~ initiate(drop(V1)), more_goals(Vl).[-1@9,
vi].

:~ initiate(collect), not lava.[-1@8].

:~ initiate(interact(Vl)), not danger, not
on(goal,platform).[-1@7, V1].

:~ initiate(explore(Vl)),
occludes_more(V1,Vv2). [-1@6, V1, V2].

:~ initiate(explore(Vl)), occludes(Vl).[-1@5,
VII.

:~ initiate(avoid).[-1@4].

:~ initiate(balance). [-1@3]

:~ bigger(Vl,v2), initiate(interact(vl)).[-
182, vi, v2].

:~ initiate(rotate).[-10@1].

Q
o]
(=
<
Q
e
o
=]
—
N
w
—

https://www.researchgate.net/figure/Latent-space-
representation-of-dataset-A-learned-by-autoencoder- https://www.ijcai.org/proceedings/2022/742
architecture-AE-9-after fig3 319875464



https://www.researchgate.net/figure/Latent-space-representation-of-dataset-A-learned-by-autoencoder-architecture-AE-9-after_fig3_319875464
https://www.researchgate.net/figure/Latent-space-representation-of-dataset-A-learned-by-autoencoder-architecture-AE-9-after_fig3_319875464
https://www.researchgate.net/figure/Latent-space-representation-of-dataset-A-learned-by-autoencoder-architecture-AE-9-after_fig3_319875464

Discussion

. Trade-offs:

- Small data -> more structure/inductive bias (overfitting to problem
setting?)

(a) learning (b) inference

Figure 1. Task-oriented object recognition. (a) In a learning phase,
arational human is observed picking a hammer among other tools
to crack a nut. (b) In an inference phase, the algorithm is asked to
pick the best object (i.e. the wooden leg) on the table for the same
task. This generalization entails physical reasoning.




Discussion

- Human imitation learning

- No technical details (STC-AoGs)
- Bread-first-search literature

- No judgement/ethics

- Embodiment and Scaffolding

. “Understanding doesn’t emerge in the observer only; it also emerges from
the interaction between observer and environment”

- Representation + set of tools
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Technical details

E(pg)= Y, Eo(v)+ > Eg(r)

veEV T (pg) rER(pg)

Esrc(pg) = Bs(pg) + Br(pg) + Ec(pg) + Y Erlr)
reR*(pg)

The prior proability of a parse graph pg is then
defined as:

' 1
P(pg] = EE_ESTc:(pg) @

Ey(pgvia) = Esrc(pgvia) — log p(vid|pguia) (5)

3.2 Temporal parsing

We perform temporal parsing following the approach
proposed in [9], which is based on the Earley parser
[54]. The input video is divided into a sequence of
frames. The agents, objects and fluents in each frame are
identified using the spatial parser and special detectors.

3.3 Causal parsing

After all the events are detected in temporal parsing,
we then perform causal parsing. For each fluent change
detected in the video using special detectors, we collect
the set of events that occur within a temporal window
right before the fluent change and run the Earley parser
again based on the sub-graph of the C-AOG rooted at
the detected fluent change.
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Figure 3.18: An And-Or graph example for the object category — clock. It has two parse graphs shown in
Figure one of which is illustrated in dark arrows. Some leaf nodes are omitted from the graph for
clarity. From [87].
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