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ABSTRACT

Pure deep learning approaches achieve state-of-the-art melanoma detection accuracy,
outperforming their human counterparts. However, their outputs are untrustworthy
given that they are black-box models with which there is no principled way to understand
their inner mechanisms underlying a decision. To mitigate such elusive behavior, we
adopt a concept-bottleneck technique to make outputs from a existing high-performing
ResNet interpretable for melanoma classification. Our results indicate that while the
bottleneck technique hampers classification accuracy (achieving 43% compared to a
pure ResNet which reaches 58% after finetuning for 5 epochs), this comes with the
benefits of producing interpretable outputs by manipulating predicted concepts.
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1 INTRODUCTION
Melanoma is a type of malignant tumour with approximately 325000 cases estimated
globally in 2020, corresponding to about 20% of cases of skin cancer worldwide. It has
a mortality rate between 2% and 5% with variability owed to ethnicity, gender and age
(Arnold et al., 2022).

This global health burden, similar to other cancers, can be mitigated with its early
detection and subsequent treatment. The prognosis of melanoma is done through vi-
sual inspection suspicious pigmented lesions (SPLs), which is challenging owed to its
similarity with other skin lesions (Jojoa Acosta et al., 2021). There exists non-invasive,
imaging diagnostic methods using biomicroscopy, fundus photography, or ultrasonogra-
phy (Nasr-Esfahani et al., 2016). However, these are often inflexible to scale-up due to
the need of access to dermatologists with substantial expertise Patel et al. (2023), which
may be infeasible for the high volume pigmented lesions available to process (Lewis,
2021). Thanks to the advent of artificial intelligence-based (AI) methods spearheaded
by deep neural networks (DNNs), there is now extensive research exploring comput-
erized approaches that provide a comfortable, less expensive, and speedy detection of
melanoma (Dildar et al., 2021) that can aid practitioners in simplifying the workload of
melanoma detection.

Deep learning (DL) is a technique that extracts task-dependent features from a given
a dataset to solve a problem (Dildar et al., 2021). It has been extensively studied in
the context of melanoma detection, often achieving high classification accuracy that
outperforms human dermatologists (Patel et al., 2023). Despite constantly redefining
state-of-the-art (SoTA) performance, DNN-based architectures, like convolutional neural
networks (CNNs), are black-box models, and thus their outputs are untrustworthy.
Suppose a dermatologist uses a DL model to identify melanoma given an image of a



SPL, and it gives a positive output. She might ask what is the model looking at to obtain
such prediction, and if what the model is looking is irrelevant, can she tell it to change its
prediction? This is important to know in a medical setting as it impacts what treatment
a patient undergoes, or whether they can avoid unnecessary procedures and why. This
is important to consider especially if we are interested in model deployment, where
trustworthiness is paramount.

In this work, we explore a concept-bottleneck modelling technique by Pang et al.
(2020), which consists of a plug-and-play module that can be added to existing high-
performing DNNs to extract concepts from SPL images that help classify them in
an interpretable way. We frame melanoma detection as a binary classification task
that leverages contextual information on the image and run experiments to showcase
advantages and limitations of our proposed method.

2 METHODS AND MATERIALS
2.1 Dataset
We use an open-source dataset from the Kaggle Competition platform provided by
the Society for Imaging Informatics in Medicine (SIIM). It D = {X,c,y} consists of
|X| = 33126 images downsampled to a 256× 256 pixel resolution, of which values
are normalized. Each is annotated with y ∈ {0,1} based on whether it is a malignant
melanoma or benign lesion. There is contextual information c attached to each sample
as metadata, measuring:

• the sex of the patient (when unknown, will be blank): either female or male.
• approximate patient age at time of imaging, which is either 0, 10, 15, 20, 25, 30,

35, 40, 45, 60, 65, 70, 75, 80, 85, 90 or unknown.
• anatomical site of the imaged lesion: head/neck, upper extremity, lower extremity,

torso, palms/soles, oral/genital or unknown.
• detailed diagnosis of the lesion (train only): nevus, melanoma, seborrheic kerato-

sis, lentigo NOS, lichenoid keratosis, solar lentigo, cafe-au-lait macule, atypical
melanocytic proliferation, or unknown.

We treat each attribute as a categorical variable and one-hot them for modelling 1,
resulting in 35 binary variables. We drop NaN values as a simple preprocessing step.
Most SoTA DNNs ignore the above metadata, however they prove valuable to shed
insight into black-box predictions. We denote the above 35 binary attributes as concepts.

We randomly partition the dataset into a training and validation split using an 80:20
ratio. The test set Dtest = {X,c} only consists of images, of which pixel values we
normalize, and concepts. Model performance is known after submitting its predictions
to the platform.

This is a challenging task given the heavy class skewness towards benign samples
(|y0|= 32542) (see Figure 1), as well as the presence of confounding objects per image:
hairs, blood vessels, inflammation around the lesion, among others (Jojoa Acosta et al.,
2021) that may influence a prediction. To partially mitigate this imbalance, we perform
data transformation techniques (see Appendix 5.2) over the training images to increase
their diversity.

1While age can be considered a continuous variable, we note that the original authors only annotated
the age intervals, so it is reasonable to treat it as a categorical variable.
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Figure 1. A depiction of training samples of SPLs, where top row consists of
malignant samples and bottom row are benign

Figure 2. A depiction of the model architecture described by Pang et al. (2020)
adapted to the task of melanoma detection.

2.2 Model
To mitigate black-box behavior, we resort to concept-bottleneck modelling2. We are
given training points {(x(i),c(i),y(i))}n

i=1, where x ∈ Rd , and c ∈ Rk is a vector of k
concepts provided as metadata. The task of concept bottleneck models is to predict c
from x, and then predict y. Their functional form is ŷ = fφ (gθ (x)), where g : Rd → Rk

is parameterized by θ and maps an image x into the concept space (”palm lesion”,
”female”, etc.)3, and f : Rk → R is parameterized by φ and maps concepts into a final
prediction (”benign”)(Figure 2). In our setting, for gθ (·) we use a pretrained ResNet18
where we reshape the last layer to make a pointwise binary prediction on what attributes
are present in the input image. We treat fφ (·) as a binary logistic regression model. For
example, given an image, the overall pipeline first predicts the probabilities of concepts,

2We release our code at https://www.kaggle.com/code/awxlong/
concept-bottleneck-modelling-in-melanoma

3They are described as ”bottleneck” because k ≪ d, and the output depends on this low-dimensional
vector.
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e.g. with highest activations at being from a female, approximately 50, with a lesion
in the upper extremity that is solar lentigo. From there, the model makes a decision on
whether it is benign or not.

There are three ways to assemble f and g (see (Pang et al., 2020) for their details),
either separately, sequentially or jointly. We pick the joint configuration where both
components are trained simultaneously in an end-to-end manner by optimizing for θ ,φ :

θ̂ , φ̂ = argmin
θ ,φ

n

∑
i
[LY ( fφ (gθ (x(i))),y(i))+

|c|

∑
j

λLC j(gθ (x(i)),c(i))]

, where LC j : R×R → R+ is the binary cross-entropy (BCE) with logit loss that
measures the discrepancy between the predicted and true j-th concept, LY : R×R→R+

is the BCE loss that measures the discrepancy between predicted and true targets, and
λ > 0 is a hyperparameter that controls the influence of the loss of gθ , where smaller
value indicates that concepts contribute less to the final prediction. .

This is because in experiments done by Pang et al. (2020), the joint variant was the
highest performing among the three, and achieved competitive performance or even
surpassed that of pure DNNs approaches in their tasks of bird classification and bone
spur severity prediction.

2.3 Experiment setup
We define a baseline to be a pretrained ResNet18 to illustrate the advantages of our
proposed approach. We use the following hyperparameters taken from (Pang et al.,
2020) for both models and do not optimize them: Adam optimizer with default settings,
a learning rate of 0.01, a linear learning rate scheduler with a step size of 20, weight
decay of 0.0004 to prevent overtraining, batch size of 64 and fine-tune for 5 epochs4. In
the case of our bottleneck model, we define λ = 0.001 as borrowed from the original
authors. We train for 2 seeds {42,56} on a P100 GPU on a Kaggle Notebook.

3 EVALUATION AND DISCUSSION
3.1 Results
We monitor and report several metrics during training and validation (Figure 3):

• Binary classification accuracy measured by the ratio of true positives and total
amount of predictions, where the model’s predictions are binarized via a cutoff of
≥ 0.5. Closer to 1 is better.

• The BCE Loss between target and predictions, where closer to 0 is better. For
the bottleneck model, we choose not to report concept prediction accuracy (an
average over each concept) as it is out of the scope of our work.

• For validation, we also report the area under the receiver operating characteristic
(ROC) curve, or AUC for short, which is an aggregate measure of a model’s
performance across all possible classification thresholds, where closer to 1 means
better performance.

4Preliminary experiments show that this is the amount feasible under constrained computational
resources
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• After training and validation, we also compute the F1-Score = 2× precision×recall
precision+recall ,

a measure of the harmonic mean of precision5 and recall6, where closer to 1
indicates better performance. This is because the dataset is highly imbalanced and
a high precision may be due to the model being biased towards identifying benign
samples.

The results show high variability in the metric values, arguably because both models
just started training and haven’t converged. They achieve roughly similar training and
validation accuracies (≈ 98%). The F1-scores for training and validation splits are 0
for both models when the classification threshold is set at ≥ 0.5. In future work we can
either augment the malignant samples in order to balance the dataset, or perform a grid
search to choose a threshold catered to the class skewness.

We submitted the predictions and we obtained 58% for the baseline model, while
43% for our concept-bottleneck model. Despite achieving lower score, we note that we
1) haven’t performed hyperparameter optimization and 2) we haven’t trained for several
epochs. Nonetheless, our concept-bottleneck model comes with a strong advantage of
interpretability.

3.2 Diagnosis of learnt concepts
Test labels are not available due to concerns of test-set leakage, so if we resort to black-
box deep learning, we wouldn’t be able to gain any insight into why our ResNet achieved
58%. This is not the case for our concept-bottleneck model, mainly due to its logistic
regression tail that has learnt p(c|x) a distribution of concepts given input image.

Consider the example where we diagnose Figure 4. The model predicts y = 0 it is a
benign lesion. By taking the argmax of the concept-bottleneck model’s tail, we extract
that it predicts with high confidence it is from a female, from the oral/genital site, a
lentigo NOS diagnosis (a harmless lesion), and approximately age 50 (see Equation 1).
A dermatologist (or a user who took a photo of their lesion), by having access to these
predictions, gains a deeper understanding of why the model gave a particular output. If
the concepts are inaccurate, and the model’s prediction is a false positive or negative,
the user can intervene in the predicted concepts, and influence the model’s predictions.
This is because while the pipeline only needs an image input, the user can also correct
predicted concepts as part of f (e.g. changing to male lesion misidentified as female),
which can update the decision for the better. This showcases a form of human-computer
interaction which we could explore in future work given that concepts are provided in
Dtest , albeit it is out-of-scope here.

Moreover, we can also access the coefficients of f in order to understand what are
the key concepts that trigger the label p(y|c) (see Equation 1). We notice a negative
bias, which is consistent with the class skewness towards class 0 images. The same
analysis can be done for the other variables. A machine learning engineer without a
dermatology background could also examine the coefficients for medical insight, i.e,
those concepts with highest coefficients can inspire navigating the melanoma literature
on discrepancies in incidence rates of benign/malignant lesions dependent on age group,
gender or anatomical site of the lesion. These coefficients are also useful to diagnose

5ratio of true positives to true and false positives
6ratio of true positives to true positives and false negatives
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Figure 3. Results obtained after running for 2 seeds for the baseline and bottleneck
models. We follow the convention that a blue line always corresponds to the
bottleneck’s metrics, a filled line to always report accuracy corresponding to the left
axis, a dash-dotted line to report loss values corresponding to the right axis (note the
different scales) and a dotted line for reporting AUC values. We plot error bars, where
we note that their large margins are because we only fine-tune for 5 epochs. At the top
and middle, we plot training and validations measurements respectively, where we stop
when both models reach around 98% train and validation accuracy. At the middle plot,
we notice that both baseline and bottleneck’s performances converge, and as such lines
overlap. At the bottom, we draw the AUC values, where we stop when the baseline
achieves 0.55±0.22 and the bottleneck achieves 0.63±0.11.
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Figure 4. A depiction of test sample 42, where we can extract the predictions of
concepts associated to the model, such as its gender, anatomical site, subtype of lesion
and age.

potential biases in the collected data. For instance, had the learnt coefficient for females
been higher w.r.t males, which is inconsistent with the literature (Bellenghi et al., 2020),
we would argue for a scrutiny on the data collection process.

3.3 Limitations and improvements
Despite interpretable results, our concept-bottleneck model has lower test performance
than a pure deep learning. We argue that this is mainly due to the class imbalance, as
well as constrained computational resources. Also, despite being more interpretable, we
note that the model is limited to the concepts available in the training data, i.e, it can’t
use ethnicity that helps detect melanoma, despite it being a very important factor that
could also determine the survival rate of a potential patient (Lam et al., 2021). This is
unless the original training data also measures these features and we retrain the model.

Other improvements include addressing the class skewness via artificial augmen-
tation of malignant samples and retraining the model with different hyperparameters,
such as increasing the number of epochs to 100 within tolerable computational demands.
We are confident that the concept-bottleneck model can match or even surpass the pure
ResNet’s performance as reported by Pang et al. (2020) in other tasks7.

Lastly, it is worth noting that thanks to the pipeline’s modularity, we can replace
either f or g with more powerful SoTA models, as long as they’re end-end differentiable.
In future work, for the feature extractor gθ , we are interested in leveraging the self-
attention mechanism of pretrained transformers, which has been shown useful for
obtaining a disentangled representation of the input image (Faulkner and Zoran, 2022).
For fφ , we can use more complex models that explore the interaction of concepts (e.g
f emale ∗ age 50) like symbolic regressors because it is well known that melanoma
incidence rates are best studied via higher-order dependencies (Arnold et al., 2022;
Bellenghi et al., 2020).

7Preliminary experiments show that by increasing epochs to 25 and augmenting class 1 images to
build a balanced dataset, the concept-bottleneck model’s test performance climbs up to 55.87%
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4 CONCLUSION
In this work, we adopted a concept-bottleneck technique by Pang et al. (2020) for
melanoma detection. It is a versatile method that can be combined with existing SoTA
methods to achieve high performance. By leveraging concepts, predictions are not of
black-box nature anymore, which is pivotal in a medical setting where model output
must be trustworthy, examinable and modifiable given more contextual information.

Our model is in a better standing for deployment compared to black-box deep
learning models. However, there is still a lot of work to do in order to make it a
more powerful predictor, and thus widely accessible. This includes hyperparameter
optimization for achieving higher test scores, a more intricately labeled meta-dataset to
account for important concepts, and providing guidelines on how to perform concept
intervention and interpretation.
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5 APPENDIX
5.1 Logistic regressor’s functional form

ŷ =−0.10× female−0.10×male+0.08× site head/neck
−0.00× site low extremity−0.12× site oral/genital
−0.06× site palms/soles+0.06× site torso
−0.03× site up extremity+0.00×diag atypical melanocytic proliferation
+0.08×diag cafe au lait macule−0.06×diag lentigo NOS
+0.04×diag lichenoid keratosis−0.05×diag melanoma
+0.09×diagnosis nevus+0.08×diag seborrheic keratosis
−0.00×diag solar lentigo−0.08×diag unknown
+0.05× age 0−0.07× age 10−0.05× age 15
−0.01× age 20−0.03× age 25+0.03× age 30
+0.04× age 35−0.00× age 40+0.05× age 45
−0.16× age 50−0.06× age 55+0.00× age 60
−0.02× age 65+0.17× age 70+0.02× age 75
+0.06× age 80−0.10× age 85+0.01× age 90−0.18

(1)

5.2 Data augmentations
With the existing training dataset, we performed with 50% probability the following
image transformations:

• Cutout
• 90o degrees rotation
• Flipping
• One of changing brightness, or hue saturation
• Adding Gaussian noise
• Blurring
• Optical distortion
• Shift scale rotation

9/9


	Introduction
	Methods and Materials
	Dataset
	Model
	Experiment setup

	Evaluation and discussion
	Results
	Diagnosis of learnt concepts
	Limitations and improvements

	Conclusion
	References
	Appendix
	Logistic regressor's functional form
	Data augmentations


